Institut Dr. Flad

Projektarbeit

Organische Synthesen in der Labormikrowelle

Tobias Diener
Antonia Karina
Elena Lau
Selina Müller

- Lehrgang 63 -

Betreuung: Prof. Dr. Peter Menzel

Schuljahr 2013/14
Inhaltsverzeichnis

1. Vorwort und Danksagung (Lau) .. 6
2. Zusammenfassung (Lau) .. 7
3. Summary (Lau) .. 8
4. Einleitung (Lau) ... 9
5. Geschichte und Entwicklung der Mikrowelle (Lau) 10
6. Haushaltsmikrowelle(Lau) .. 11
 6.1 Funktionsweise .. 11
 6.2 Wirkungsweise der Haushaltsmikrowelle 16
 6.3 Materialverhalten ... 16
 6.4 Laborversuche zur Haushaltsmikrowelle 19
7. Labormikrowelle (Karina, Lau) .. 24
 7.1 Historisches (Karina) ... 24
 7.2 Unterschiede zur Haushaltsmikrowelle (Karina) 25
 7.3 Einsatzgebiete (Karina, Lau) ... 25
 7.3.1 Erwärmen und Erhitzen (Karina) ... 26
 7.3.1.1 Selektives Erwärmen (Karina) .. 26
 7.3.2 Extraktionen und Aufschlüsse (Karina) 27
 7.3.3 Synthese in der Mikrowelle (Karina) .. 28
 7.4. Vorteile der Labormikrowelle (Karina) ... 28
 7.5 Synthesen, die ausschließlich in einer Labormikrowelle möglich sind (Karina) ... 29
 7.6. Arbeitssicherheit (Lau) ... 29
 7.7. Wirkungsgrade und Vergleich der Mikrowellen (Lau) 30
Projektarbeit: Organische Synthesen in der Labormikrowelle

8. Betriebsanleitung Mikrowelle CEM Discover (Diener) ..31

8.1 Vorwort ..31
8.2 Anleitung ..31
8.2.1 Methodenauswahl ...36
8.2.2 Hot Keys ...38
8.2.3 Reaktionsdurchführung ...39
8.2.4 Allgemeine Einstellungen ändern ...43
8.2.5. Mit dem PC verbinden ..44

9. Duftester (Diener, Lau) ..45

9.1 Allgemeines (Lau) ...45
9.2 Hintergrund (Lau) ...46
9.3 Anwendung (Lau) ...47
9.4 Mechanismus der Veresterung (Diener) ...48

10. Isoamylacetat (Essigsäurepentylester) (Diener) ...49

10.1 Allgemeines ..49
10.2 Isomere der Essigsäurepentylester ...49
10.3 Vorkommen von Isoamylacetat ...50
10.4 Verwendung von Isoamylacetat ..51
10.5 Darstellung ..52
10.6 Reaktionsmechanismus ...52
10.7 Labordarstellung ...53
10.8 Mikrowellendarstellung ...53
10.8.1 Protokoll ...53
10.8.2 Synthese und Versuchsbeobachtung ...57
10.8.3 Versuchsauswertung ...57
10.8.4 Zusammenfassung .. 57

11. Benzylacetat (Diener) ... 58
 11.1 Protokoll .. 59
 11.2 Synthese und Versuchsbeobachtung: .. 62
 11.3 Probleme und Fehler der Syntheseskripte von CEM ... 62

12. Salicylsäuremethylester (Karina) ... 64
 12.1 Allgemeines .. 64
 12.2 Historisches .. 66
 12.3 Natürlicher Vorkommen .. 67
 12.4 Verwendung ... 67
 12.5 Darstellung ... 69
 12.5.1 Destillative Darstellung ... 69
 12.5.2 Reaktionsmechanismus ... 70
 12.6 Labor-Synthese ... 70
 12.6.1 Protokoll .. 71
 12.6.1.1 Herkömmliche Synthese ... 72
 12.6.1.2 Mikrowellen-Synthese ... 73
 12.6.1.3 Versuchsauswertung .. 75
 12.6.1.3.1 Geruch .. 75
 12.6.1.3.2 Brechungsindex ... 75

13. Acetylsalicylsäure (Lau, Müller) .. 76
 13.1 Einleitung (Müller) ... 76
 13.2 Geschichte (Lau) .. 77
 13.3 Wirkungsweise (Lau) ... 78
 13.4 Bedeutung und Anwendung (Lau) ... 79
1. Vorwort und Danksagung

Mit dem Thema unserer Projektarbeit „Organische Synthesen in der Labormikrowelle“ folgten wir einem Vorschlag des Instituts Dr. Flad, den wir dankend annahmen, da uns dieses Thema sehr zukunftsweisende und interessante Einblicke bot.
Da in vielen Unternehmen die Labormikrowelle fester Bestandteil des Betriebsalltags ist, war es eine sehr gute Erfahrung damit schon während der Ausbildung arbeiten zu können.

Zuerst möchten wir dem Institut Dr. Flad für die Möglichkeit danken, dass wir bei dieser Projektarbeit mit einem solch innovativen Gerät arbeiten konnten, sowie für das Vertrauen das uns entgegengebracht wurde. Dies sehen wir nicht als selbstverständlich an.

Ebenso danken wir unserer Ansprechpartnerin Frau Pfiz für ihre tatkräftige Unterstützung und Hilfe bei Problemen.

Unser Dank gilt auch Frau Frey und Herrn Ruf, die uns durch die Bereitstellung der benötigten Geräte und Anleitungen jederzeit unterstützten.

Ein weiteres Dankeschön gehört Herrn Prof. Dr. Menzel, der uns kompetent beraten hat und uns Anstöße zum weiteren Vorgehen gegeben hat. Ebenfalls gilt ihm Dank für die gemeinsame Erörterung weiterer Synthesemöglichkeiten, die wir im Verlauf der Arbeit selbständig ausarbeiten konnten. Er stand uns außerdem jeder Zeit mit Rat und Tat zur Seite.

Ebenso danken wir den Laborassistenten, da sie uns tatkräftig in unserem Vorhaben durch Ideen und Chemikalien unterstützt haben und es uns mehr als einmal ermöglicht haben, auch noch nach Unterrichtsschluss im Labor zu arbeiten.
2. Zusammenfassung

Wir haben uns in unserer Projektarbeit mit der Synthese verschiedener Duftester und der Synthese des pharmazeutischen Wirkstoffs Acetylsalicylsäure in der Labormikrowelle auseinander gesetzt und die dazu nötigen Hintergrundinformationen zusammengetragen.

Für diese Teilgebiete der Synthesen in der Labormikrowelle haben wir uns entschieden, da der Nachweis über Geruch und Dünnschichtchromatographie (siehe Kapitel 13.5.4.1 und 13.6.4.1) schnell erfolgen kann. Ebenso haben wir auch drei Versuche in der Haushaltsmikrowelle durchgeführt, welche die Funktionsweise der Mikrowelle demonstrieren.

Das Ziel war es, Duftester in der Labormikrowelle zu synthetisieren was uns bei Isoamylacetat und Salicylsäuremethylester gelang, allerdings nicht bei Benzylacetat. Da der Bananenester (Isoamylacetat) erfolgreich synthetisiert werden konnte, haben wir ein Schülerversuchsprotokoll erstellt. Der Bananengeruch ist sofort nach der Neutralisation des Syntheseprodukts wahrnehmbar. Der Ester muss dazu nicht weiter aufgearbeitet werden.

Die Acetylsalicylsäure-Synthese verlief sehr gut, weshalb wir daran auch am meisten gearbeitet haben. Die Umsetzung von Salicylsäure mit Essigsäureanhydrid verlief problemlos auf herkömmlicher Art und in der Labormikrowelle, jedoch gab es ab dem zweiten Syntheseversuch von ASS in der Labormikrowelle Schwierigkeiten.

Unsere Nachweis- und Bestimmungsmethoden der ASS waren ein qualitativer Nachweis durch eine Dünnschichtchromatographie mit Referenzsubstanz, eine fotometrische
Gehaltsbestimmung sowie die Schmelzpunktbestimmung der Präparate. Außerdem wurde mit Eisen(III)-Ionen der Gehalt an nicht umgesetzter Salicylsäure überprüft.

Unser Ergebnis der Projektarbeit ist, dass die Labormikrowelle bei vielen Versuchen im Labor nicht mehr wegzudenken ist und sie eine sehr zeitsparende und sichere Technologie in der Analytik und bei organischen Synthesen darstellt.

3. Summary

The focus of our project was the synthesis of different substances in a laboratory microwave by CEM. The purpose of our efforts was to find out whether there are any differences between the synthesis of acetylsalicylic acid in a laboratory microwave in comparison to a conventional manner. The synthesis of fragrant ester and wintergreen oil was tested exclusively in a laboratory microwave. In order to get a better understanding of the topic we also gathered background information and carried out experiments in a conventional household microwave which were to show the operation of microwaves. Our aim was to synthesize isoamylat and benzylethanoat. Isoamylat smelled of banana and could be produced in the laboratory microwave without any problems. In our experimental protocol we were able to show students how the synthesis of isoamylat works. This can be used for students because you can smell the odor directly after the neutralization of the product. Owing to some problems we were not able to reach our aim in the synthesis of benzylethanoat. Our experiments with the synthesis of Wintergreen oil were successful, though. We were able to show that wintergreen oil is produced by esterification of salicylic acid. It smells similar to peppermint, so there is a relation to fragrant esters.

Our main focus was the synthesis of acetylsalicylic acid in the laboratory microwave. The first synthesis experiment succeeded in the laboratory microwave without any problems. The synthesis in a conventional manner was successful, too. The only difference was that the synthesis in the microwave was much faster. Unfortunately, the laboratory microwave stopped working properly during the second synthesis. It didn’t maintain the temperature which made a reproducible synthesis impossible.
However, we were able to draw a comparison between two preparations from the laboratory microwave and the preparation from the usual synthesis.
We tested and compared these three preparations with regard to purity, content, melting point and outcome.
As a result of our project it can be stated that the laboratory microwave is a pioneering and a versatile development in chemical analytics.

4. Einleitung

Da unser Projektarbeitsthema eine Vielzahl unterschiedlicher Teilgebiete umfasst, haben wir für jedes der Themengebiete eine separate Einleitung unter dem Punkt „Allgemeines“ verfasst.
5. Geschichte und Entwicklung der Mikrowelle

\(^1\) Im Folgenden: Mikrowelle
In der Pharmazie ist die Labormikrowelle mittlerweile nicht mehr wegzudenken, da dort die organischen Synthesen schneller entwickelt werden können. Durch die Zeit- und Energieersparnis und die angenehme Bedienung ist es einfacher, neue Methoden und Substanzen zu entwickeln. [1], [2]

6. Haushaltsmikrowelle

6.1 Funktionsweise

Abbildung 1: Magnetron (Quelle: Abbildung wurde vom Autor selbst gezeichnet)
Strahlung und Wellenlänge:
Mikrowellenstrahlen sind elektromagnetische Wellen im Frequenzbereich zwischen 300 MHz und 300 GHz (das heißt Wellenlängen zwischen 1m und 1mm). In Europa schwingen erzeugte Mikrowellen pro Sekunde 2,455 Milliarden Mal mit einer Wellenlänge von 12 cm. Bei dieser Wellenlänge ist die Nutzung lizenzfrei. Höhere Frequenzen sind staatlich reguliert.

Bei Mikrowellenstrahlen gelten die gleichen physikalischen Gesetze wie für alle anderen elektromagnetischen Wellen (z.B. Licht), wie Reflexion und Absorption. [6]
Abbildung 2: Spektren (Archiv Institut Dr. Flad)
Sicherheit:
Die Tür schirmt die Mikrowellen im Inneren ab, sodass keine Strahlung nach außen gelangt. Dies wird auch als Faraday'scher Käfig bezeichnet. Der Verschlussmechanismus ist so aufgebaut, dass die Mikrowelle nur bei geschlossener Tür arbeiten kann. Die Öffnungen im Lochblech an der Scheibe sind kleiner als die Wellenlänge der Mikrowellen (ca. 12 cm), wodurch ein weiterer Schutz entsteht, da keine Mikrowellenstrahlen nach außen treten können. [6]

Leistungsregulierung:

Ein auf 600 Watt Leistung eingestelltes 1200 Watt-Gerät, wird also wechselnd zum Beispiel 10 Sekunden lang 1200 Watt Strahlungsleistung auf das Gargut abgeben und danach 10 Sekunden im Leerlauf sein. Aber ein 1200 und ein 800 Watt-Herd, welche beide auf 400 Watt eingestellt sind, liefern unterschiedliche Garergebnisse, da auch während der Leerlaufzeit Wärme abgegeben wird und das Gargut abkühlen kann. Der 1200 Watt-Herd heizt zwar schneller auf, ist aber zwei Drittel der arbeitenden Zeit im Leerlauf. Der 800 Watt-Herd ist dagegen die Hälfte der Zeit im Leerlauf. [7], [8]

Invertertechnik:
Das oben beschriebene Problem kann gelöst werden, indem man anstatt nur eines Trafos auch ein Schaltnetzteil, also ein Spannungswandler, einbaut. Dadurch wird die Anodenspannung regulierbar. Die Spannung wird dann so gewählt, dass das Magnetron durchgehend die gewünschte Leistung abgibt. Dies ist bei Gargut wie beispielsweise Fisch nötig, da dieser empfindlich in der Zubereitungsart ist.
[1]
6.2 Wirkungsweise der Haushaltsmikrowelle

6.3 Materialverhalten

Mikrowellenstrahlen können nur in Materialien eindringen, die bewegliche Dipolmoleküle besitzen (Ionen und polare Substanzen). Dadurch eignet sich Glas und Kunststoff als Gargut-Gefäß. Bei Eis (Festkörper) und Wasserdampf (Gase) ist die Reibungswirkung der Moleküle sehr gering. Sie werden nicht effizient erwärmt. Bei Feststoffen sitzen die Moleküle in Gittern fest, dadurch ist ihre Beweglichkeit extrem eingeschränkt. Bei Gasen ist der Abstand der Moleküle zu groß um eine hohe Reibungswärme zu erzeugen, deshalb sind sie nicht als Gargüter geeignet.

Bei dicken Metallschichten werden die Mikrowellenstrahlen nur reflektiert, sie durchdringen das Metall nicht.

Projektarbeit: Organische Synthesen in der Labormikrowelle

Tabelle 1: Materialverhalten

<table>
<thead>
<tr>
<th>Materialverhalten</th>
<th>Reflexionsgrad</th>
<th>Absorptionsgrad</th>
<th>Eindringtiefe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metalle</td>
<td>hoch</td>
<td>niedrig</td>
<td>niedrig</td>
</tr>
<tr>
<td>Glas, Kunststoffe, Keramik</td>
<td>niedrig</td>
<td>niedrig</td>
<td>hoch</td>
</tr>
<tr>
<td>Wasser (flüssig)</td>
<td>niedrig</td>
<td>hoch</td>
<td>niedrig</td>
</tr>
<tr>
<td>Eis</td>
<td>niedrig</td>
<td>niedrig</td>
<td>hoch</td>
</tr>
</tbody>
</table>

Tabelle 2: Materialverhalten (Quelle: Tabelle wurde vom Autor selbst erstellt)

<table>
<thead>
<tr>
<th>Leiter</th>
<th>Reflexion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metalle reflektieren die Mikrowellenenergie und heizen sich nicht auf</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Isolator</th>
<th>Transparenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viele Materialien (z.B. Kunststoffe) sind transparent gegenüber Mikrowellenenergie und heizen sich nicht auf</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dielektrika</th>
<th>Absorption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diese Materialien absorbieren die Mikrowellenenergie und werden somit erhitzt (z.B. Wasser)</td>
<td></td>
</tr>
</tbody>
</table>
Herkömmliches Erwärmen:
An dieser Stelle kann ein Bezug zu dem durchgeführten Kartoffelversuch (Versuch Nr. 3, Kapitel 6.4) erfolgen, da eine Kartoffel in der Mikrowelle nur eine Minute braucht um gar zu werden, in einem Kochtopf dauert dies 15-20 Minuten.

Abbildung 3: Konvektive Erhitzung (Quelle: Abbildung wurde vom Autor selbst gezeichnet)
6.4 Laborversuche zur Haushaltsmikrowelle

Um uns in unser Projektarbeitsthema einzuarbeiten, haben wir Versuche in der Haushaltsmikrowelle durchgeführt. Da auf der Homepage des Instituts Dr. Flad viele Versuche zu dem Thema „Chemie in der Mikrowelle“ verfügbar waren, haben wir uns einige davon ausgesucht, um die Grundlagen der Mikrowelle beobachten und erklären zu können.

Versuch Nr. 1: Handschuhversuch

Bei diesem Versuch haben wir gesehen, wie sich Mikrowellenstrahlen auf Wasser, also auf Dipole, auswirken. Sie rotieren und werden von der Mikrowellenstrahlung angeregt. Das Wasser erwärmt sich und geht in die Gasphase über.

Die Mikrowelle wird auf 800 Watt eingestellt und ein Luftballon wird zugeknotet für etwa eine Minute auf den Drehteller gelegt.

Beobachtung: Mit dem Handschuh passiert nichts.

Das Versuchsergebnis mit dem Handschuh ohne Wasser:

Abbildung 4: Handschuh ohne Wasser
Projektarbeit: Organische Synthesen in der Labormikrowelle

Der Versuch wird wiederholt, jedoch wird der Handschuh diesmal mit etwas Wasser befüllt und zugeknotet.

Beobachtung: Der Handschuh ist aufgebläht und heiß, jedoch sackt er nach kurzer Zeit wieder in sich zusammen. Das Wasser ist in den gasförmigen Aggregatszustand übergegangen, kondensiert aber wieder, sobald die Mikrowellenstrahlung aufhört.

Abbildung 5: Handschuh mit Wasser

Versuch Nr. 2: CD-Versuch

Ein Teil der Mikrowellenstrahlen werden am Metall reflektiert, aber teilweise regt die Strahlungsenergie die delokalisierten Elektronen im Metall an, wodurch sich das Metall erhitzt. Die auf CDs aufgetragene sehr dünne Metallschicht erhitzt sich und es kommt zum Funkenschlag, bis sie zu schmelzen beginnt.

Bei diesem Experiment wird die Mikrowelle auf 800 Watt eingestellt, die Laufzeit beträgt 5-10 Sekunden. Unter die CD legt man ein Blatt oder Küchenpapier, die unbeschriftete Seite der CD zeigt nach oben.

Beobachtung: Es entstehen Funken und Risse in der CD.
Abbildung 6: CD vorher

Abbildung 7: CD während des Versuchs (Quelle: http://www.chf.de/eduthek/mikrowelle/8590.jpg (03.01.2014))
Abbildung 8: CD nachher

Versuch Nr. 3: Eine Kartoffel kochen

Abbildung 9: Kartoffel vorher

Abbildung 10: Kartoffel nachher
7. Labormikrowelle

7.1 Historisches

Der wesentliche Vorteil bei der Anwendung von Mikrowellen besteht darin, dass das Gut direkt und gleichmäßig erwärmt werden kann. Die Wärmeübertragung findet also nicht mehr über die Gefäßwände durch Wärmeleitung oder Konvektion statt. So werden ungleichmäßige Erwärmung oder die Ausbildung kalter oder überhitzter Stellen vermieden. [12.1]

Der Grund weshalb chemische Reaktionen in der Mikrowelle schneller ablaufen ist, dass polare und ionische Moleküle die Fähigkeit besitzen, Mikrowellenstrahlung zu absorbieren und durch Molekühlbewegungen in Wärme umzuwandeln. So kann innerhalb sehr kurzer Zeit der Reaktion die nötige Aktivierungsenergie zugeführt werden, wodurch oftmals eine deutliche Reaktionsbeschleunigung im Vergleich zu konventionellen Heizmethoden erzielt werden kann. [14]

Das bedeutet nicht nur enorme Zeitersparnis aufgrund der verkürzten Reaktionszeiten, sondern führt ebenfalls zu einem geringeren Energiebedarf. Darüber hinaus können auch höhere Ausbeuten, also weniger Nebenprodukte und somit eine höhere Reinheit der Reaktionsprodukte erzielt werden. Da die Energiezufuhr sehr schnell und gezielt geregelt und gestoppt werden kann, ergeben sich durch den Einsatz von Labormikrowellen Sicherheitsvorteile. [12]

2 Wärmestromung, siehe Kapitel 6.3. Abb. 3
7.2 Unterschiede zur Haushaltsmikrowelle

7.3 Einsatzgebiete

- **Trocknung in der Mikrowelle:** diese erfolgt schneller als im Trockenschrank.
 Anwendungsgebiete: Lebensmittelindustrie (Fettextraktion), Abwassertechnik, Papierindustrie

- **Veraschung von Proben**
 Anwendungsgebiete: Glühverlust/Glührückstand-Analysen für Lebensmittel, Öle, Kunststoffe, Kohle, Pharmazeutika

- **Schmelzen und Schmelzaufschlüsse**
 Anwendung in der Elementaranalyse
7.3.1 Erwärmen und Erhitzen

Dagegen sind Labormikrowellen in der Lage, den Inhalt des Reaktionsgefässes ohne Erwärmung der gesamten Apparatur, zu erhitzen. Da die Probe von innen nach außen erwärmt wird, kann selbst bei kleinsten Mengen eine gleichmäßige Wärmezufuhr erzielt werden. [18]

7.3.1.1 Selektives Erwärmen

Unterschiedliche Materialien wandeln Mikrowellenstrahlung in unterschiedlichem Maße in Wärme um. Diese Selektivität kann man sich auf verschiedene Arten zu Nutze machen.

So kann beispielsweise durch die Wahl des Reaktionsgefässes, je nach Bedarf, die gesamte Probe oder Teile davon mehr oder weniger stark erwärmt werden.

7.3.2 Extraktionen und Aufschlüsse

Verglichen mit den traditionellen Aufschlussystemen, die mit konvektiver Beheizung arbeiten (wie etwa Druck-Bomben) kann mit Hilfe der Mikrowelle eine Feststoffprobe innerhalb kurzer Zeit gelöst werden. In demselben Maße zeitsparend kann die Aufschlusslösung auch wieder abgekühlt werden. Weiter kann bei Extraktionsverfahren der Zeit- und Materialaufwand auf ein Minimum reduziert werden.

Die Einsatzgebiete sind breit gefächert. Beispielsweise können im Rahmen der Umweltanalytik gängige Stoffgruppen (zum Beispiel PAK3, Pestizide, Herbizide, CKW4, Dioxine und PCB5) aus den verschiedenen Matrizen, wie etwa aus Boden, Sediment, Wasser oder Klärschlamm extrahiert werden.

Ein weiteres Einsatzgebiet sind biologische Materialien, wie etwa Gewebeuntersuchungen oder die Rückstandsanalytik von Metaboliten6 (u. a. radioaktiv markiert) in den unterschiedlichsten Pflanzen und Lebensmitteln.

Von großem Interesse ist die gesamte Palette der pharmazeutischen Substanzen in den verschiedensten Darreichungsformen. So werden nicht nur Wirkstoffe in Tabletten, Kapseln und Dragees, sondern auch Kunststoffuntersuchungen wie etwa bei wirkstoffhaltigen Pflastern, Dosieraerosolen oder Arzneimittelverpackungen.

Das gesamte Assortiment an Alterungsschutzmitteln, UV-Stabilisatoren, Weichmachern, Additiven in Polymeren etc. kann so analysiert werden. [14]

\footnotesize
\begin{itemize}
\item Polyzyklische aromatische Kohlenwasserstoffe
\item Chlorierte Kohlenwasserstoffe
\item Polychlorierte Biphenyle
\item Zwischenprodukte des Zellstoffwechsels
\end{itemize}
7.3.3 Synthese in der Mikrowelle

Das Anwendungsspektrum mikrowellenunterstützter Synthesen ist beachtlich. Es umfasst sowohl den anorganischen als auch den organischen Aspekt der Chemie.

So werden mit Hilfe von Labormikrowellen anorganischen Reaktionen, wie etwa zur Herstellung von Legierungen oder anderer intermetallischer Verbindungen durchgeführt.

Im Bereich der organischen Chemie können Reaktionen in Lösung (z. B. Bildung von Estern und Ethern), metallorganische Reaktionen (wie etwa zur Darstellung von Grignard-Verbindungen), oder Oxidationen und Reduktionen durchgeführt werden. Zudem können sie für lösungsmittelfreie Synthesen, also Festkörperreaktionen eingesetzt werden.

Weiter wird die Mikrowelle für Monomersynthesen und Polymerisationen eingesetzt.

Ein weiterer großer Anwendungsbereich behandelt die Niedertemperatursynthesen.

Im Rahmen der Projektarbeit wurde lediglich die Synthese von Duftestern und Acetylsalicylsäure berücksichtigt. [19]

7.4. Vorteile der Labormikrowelle

Der Einsatz von Mikrowellen im Laboralltag erweist sich durch die unkomplizierte Bedienung und die Möglichkeit einer bequemen Reaktionsführung als eine effiziente Alternative.

Weitere Vorteile ergeben sich durch die Möglichkeit der genauen Einstellung und Überprüfung der Reaktionsparameter.

Aufgrund ihrer effizienten Arbeitsweise ermöglicht sie einen minimalen Einsatz an Energie und Chemikalien, ebenso wie eine maximale Ersparnis an Zeit.

So erweist sie sich, nicht nur langfristig betrachtet, als kostengünstiger und umweltfreundlicher Gegenentwurf zu den konventionellen Heizquellen. [18]
7.5 Synthesen, die ausschließlich in einer Labormikrowelle möglich sind

7.6. Arbeitssicherheit

1) Durch austretende Mikrowellenstrahlung, infolge von kaputten Abschirmungen, kann Gewebe verletzt werden. Alle benutzten Geräteteile dürfen keine Mikrowellenstrahlung nach außen lassen.

2) Von der schnellen und hohen Erhitzung in Labormikrowellen geht eine Brandgefahr aus. Lösemittel sieden schneller als normalerweise und Feststoffe können glühen.

3) Wird mit Druck gearbeitet, muss auf die Substanzmenge, die Heizdauer und die Strahlungsleistung geachtet werden. Eine Gasentwicklung wäre beispielsweise
möglicherweise. Durch den Druckaufbau könnten die Reaktionsgefäße beschädigt werden.

4) Durch Siedeverzüge, von beispielsweise ätzenden Substanzen, könnte das Gerät beschädigt werden. Deshalb muss auf die Ansatzmenge geachtet werden.

5) Ein intakter Magnetrührer ist erforderlich, damit eine homogene Durchmischung der Substanzen gegeben ist und Siedeverzüge verhindert werden.

6) Metalle, Legierungen oder konzentrierte Natronlauge könnten Funkenstiche verursachen, da sie als Mikrowellenantennen dienen. Dadurch könnten die Reaktionsgefäße schmelzen.

7) Eine geregelte Abluft muss bei giftigen oder explosiven Substanzen vorhanden sein.

8) Die intakte Funktion von Temperatur- und Druckfühler müssen regelmäßig überprüft werden. [23] [24]

7.7. Wirkungsgrade und Vergleich der Mikrowellen

In der Haushaltsmikrowelle wandelt ein Magnetron nicht sämtliche investierte Energie in Mikrowellenstrahlung um, sondern nur 60 bis 80 Prozent. Dadurch wird Energie in Form von Wärme an die Umwelt abgegeben. Jedoch ist die Zeit- und Energieersparnis höher als beim konventionellen Erwärmen von Speisen.
Beim konventionellen Erwärmen ist der Wirkungsgrad vom Material abhängig, welches erhitzt werden soll. Gut leitende Materialien beeinflussen den Wirkungsgrad negativ, somit ist der Wirkungsgrad geringer als bei Haushaltsmikrowellen.

Bei Labormikrowellen ist dies ähnlich. Es wird auch nicht alle zugeführte Energie in Form von Wärme genutzt, aber durch eine gezielte Steuerung von Druck, Temperatur und Zeit kann ein Optimum erreicht werden. Im Vergleich zu einem Muffelofen schneidet die Labormikrowelle aus oben genannten Gründen deutlich besser ab. [25]
Projektarbeit: Organische Synthesen in der Labormikrowelle

8. Betriebsanleitung Mikrowelle CEM Discover

8.1 Vorwort

Da es bei der letzten Projektarbeit am Institut Dr. Flad Probleme mit der Bedienung der Mikrowelle gab, schlug uns Prof. Dr. Menzel zu Beginn vor, Bilder während der Einführung des Gerätes zu machen. Wir entschieden uns dazu, eine grafisch erläuterte Anleitung zu erstellen.

Um die Bedienungsanleitung so benutzerfreundlich wie möglich zu gestalten, wird sich die Anleitung im Folgenden auf das Wesentliche beschränken und nicht jede einzelne Funktion erklärt werden, sondern nur Punkte welche zum Großteil auch für unsere Projektarbeit wichtig waren.

Alle Bilder wurden selbst erstellt und bearbeitet.

8.2 Anleitung

1. AN/AUS : Hiermit wird die Mikrowelle Ein- und Ausgeschalten
Das System wird nun hochgefahren und der Startbildschirm erscheint. Dieser Vorgang kann einige Minuten in Anspruch nehmen.
Wenn das System hochgefahren ist, wird man aufgefordert ein Benutzerkonto auszuwählen. (Es ist möglich im System selbst Benutzerkonten zu erstellen, welche keine Administrationsrechte erhalten. Es ist also nicht möglich grundlegende Einstellungen zu verändern. Zur Erstellung eines solchen Benutzers später mehr)

Mit dem Cursor (Button Nr.4) wird der jeweilig benötigte Buchstabe oder die Zahl gewählt und anschließend mit dem Bestätigungssbutton die Auswahl angenommen. Ist das korrekte Passwort eingegeben, wird das Feld OK gewählt und in der rechten unteren Ecke die Auswahl mit Button Nr. 3 bestätigt.

Danach gelangt der Benutzer auf den Hauptbildschirm, von dem aus das komplette System gesteuert wird.

6. Hot Key: Funktionen dieser Knöpfe werden im Folgenden erläutert.

7. Temperaturanzeige

8. Druckanzeige

9. Methodenanzeige
8.2.1 Methodenauswahl

Die CEM Discover bietet die Möglichkeit, aus verschiedenen Modi zu wählen, welche den Einsatzbereich der Mikrowelle in verschiedene Richtungen erweitert.

Über den Button "Discover Key" (10) gelangt man in die Methodenauswahl.

Standard: Im Standardmodus wählt der Benutzer lediglich die Temperatur und eine Haltezeit der Temperatur. Alle anderen Parameter werden durch die Gerätevorgaben kontrolliert.

Fixed Power: Mit der Auswahl dieser Funktion stellt der Benutzer die Mikrowellenenergie, die maximale Laufzeit, eine maximale Temperatur und eine maximale Mikrowellenenergie ein. Das ermöglicht eine von Anfang an maximale Energie ohne „Ramping Time“ (im normalen Modus steigert das Gerät langsam die Energie).
Projektarbeit: Organische Synthesen in der Labormikrowelle

SPS: Programm für die Festphasenpeptidsynthese, das die Temperatur ca. 5°C um den eingestellten Wert variiert.

Dynamic: Hier hat der Benutzer Zugriff auf alle Parameter, so auch die Vorrührzeit und Einstellung der Rührgeschwindigkeit.

Data Review: Speichert die Temperaturkurve auf einem USB-Stick

Load/Save: Nach jeder eingestellten Methode kann man diese unter einem eigenen Namen speichern und auch wieder laden.
8.2.2 Hot Keys

Mit den sogenannten Hot Keys ist es während eines laufenden Programmes jederzeit möglich, einen Parameter zu verändern.

A: Schaltet die Kühlung an
B: Regelt die Geschwindigkeit des Magnetrührers
C: Ändert die Energie (in W)
D: Ändert die Temperatur
E: Ändert die Zeit
F: Ändert die Schranke für den maximalen Druck
8.2.3 Reaktionsdurchführung

1. Wählen Sie wie beschrieben eine geeignete Methode.
2. Ändern Sie via Hot Key ihre Parameter
3. Setzen Sie den geeigneten Gefäßadapter in das Gerät (10mL oder 35mL)
4. Bringen Sie die Reagenzien in das passende Gefäß. Dabei ist darauf zu achten, dass das Reaktionsgefäß nicht mehr als ca. halb gefüllt sein sollte und dass keine Flüssigkeiten am Rand des Glases zurückbleiben (das würde eine starke punktuelle Erwärmung hervorrufen, da hier keine Durchmischung durch den Rührfisch stattfinden kann).
Bringen Sie einen Rührfisch in das Glas ein und verschließen Sie das Reaktionsgefäß mit dem passenden Verschluss.
8.2.4 Allgemeine Einstellungen ändern

Für die Synthesen der Projektarbeit waren die Werkseinstellungen ausreichend, somit sei diese Funktion hier nur kurz erläutert.

13. Home- oder Zurück- Button

8.2.5. Mit dem PC verbinden

9. Duftester

9.1 Allgemeines

Wie und warum riechen wir?

9.2 Hintergrund

Der Anteil an Aromen im Gesamtgewicht von frischem Obst beträgt weniger als 30 mg/kg. Sie bestehen aus Fruchtestern und Fruchtlactonen8. [27], [28]

7Essigsäure oder andere Edukte können zum Beispiel den Geruch des Esters überdecken

8Lactone sind intramolekulare Ester von Hydroxycarbonsäuren
Tabelle 3: Übersicht einiger Edukte und Produkte
(Quelle: http://www.dermarki.de/wissen/chemie_ester_synthese.php (27.12.13))

<table>
<thead>
<tr>
<th>Säure</th>
<th>Alkohol</th>
<th>Reaktionsprodukt</th>
<th>Summenformel</th>
<th>Geruch</th>
<th>Verwendung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ameisensäure</td>
<td>Butanol</td>
<td>Methansäurebutylester</td>
<td>H-COO-C₄H₉</td>
<td>Rosen</td>
<td>Duftstoff</td>
</tr>
<tr>
<td>Essigsäure</td>
<td>Propanol</td>
<td>Ethansäurepropylester</td>
<td>CH₃-COO-C₃H₇</td>
<td>Früchte</td>
<td>Aromastoff</td>
</tr>
<tr>
<td>Propionsäure</td>
<td>Pentanol</td>
<td>Propansäurepentylester</td>
<td>C₂H₅-COO-C₅H₁₁</td>
<td>Blüten</td>
<td>Duftstoff</td>
</tr>
<tr>
<td>Buttersäure</td>
<td>Methanol</td>
<td>Butansäuremethylester</td>
<td>C₃H₇-COO-CH₃</td>
<td>Ananas</td>
<td>Aromastoff</td>
</tr>
<tr>
<td>Buttersäure</td>
<td>Ethanol</td>
<td>Butansäureethylester</td>
<td>C₃H₇-COO-C₂H₆</td>
<td>Pfirsich</td>
<td>Aromastoff</td>
</tr>
<tr>
<td>Valeriansäure</td>
<td>Methanol</td>
<td>Pentansäuremethylester</td>
<td>C₄H₁₀-COO-CH₃</td>
<td>Banane</td>
<td>Aromastoff</td>
</tr>
<tr>
<td>Valeriansäure</td>
<td>Pentanol</td>
<td>Pentansäurepentylester</td>
<td>C₄H₁₀-COO-C₅H₁₁</td>
<td>Apfel</td>
<td>Aromastoff</td>
</tr>
<tr>
<td>Benzoësäure</td>
<td>Propanol</td>
<td>Heptansäurepropylester</td>
<td>C₅H₁₁-COO-C₃H₇</td>
<td>Obst</td>
<td>Duftstoff</td>
</tr>
</tbody>
</table>

9.3 Anwendung

Duftester werden als
- Aromastoffe in Lebensmitteln
- Lösungsmittel für Lacke und Klebstoffe (Industrie)
- Duftstoff in Seifen, Kosmetika und Parfüms

verwendet. [26], [27]
9.4 Mechanismus der Veresterung

- R steht dabei für einen beliebigen organischen Rest.

\[
\begin{align*}
\text{H}_2\text{C} & \quad \text{O}^+ \quad \text{OH}^- \\
\text{H}_2\text{C} & \quad \text{O}^- \quad \text{OH}^- \\
\text{H}_2\text{C} & \quad \text{O}^+ \quad \text{OH}^+ \\
\text{H}_2\text{C} & \quad \text{O}^- \quad \text{OH}^+
\end{align*}
\]

\[
\begin{align*}
\text{H}_2\text{C} & \quad \text{O}^+ \quad \text{OH}^- \\
\text{H}_2\text{C} & \quad \text{O}^- \quad \text{OH}^- \\
\text{H}_2\text{C} & \quad \text{O}^+ \quad \text{OH}^+ \\
\text{H}_2\text{C} & \quad \text{O}^- \quad \text{OH}^+
\end{align*}
\]

- 3. Abspaltung von Wasser und eines Protons, welches ein Hydroxoniumion, also den Katalysator, zurückliefer.

\[
\begin{align*}
\text{H}_2\text{C} & \quad \text{O}^+ \quad \text{OH}^- \\
\text{H}_2\text{C} & \quad \text{O}^- \quad \text{OH}^- \\
\text{H}_2\text{C} & \quad \text{O}^+ \quad \text{OH}^+ \\
\text{H}_2\text{C} & \quad \text{O}^- \quad \text{OH}^+
\end{align*}
\]
10. Isoamylacetat (Essigsäurepentylester)

10.1 Allgemeines

10.2 Isomere der Essigsäurepentylester

Essigsäurepentylester entsteht, wenn Essigsäure und Pentanol (Amylalkohol) miteinander reagieren. Pentanol (Amylalkohol) besitzt acht Konstitutionsisomere (d.h. sie besitzen alle dieselbe Summenformel, unterscheiden sich aber anhand der Reihenfolge der Atome und Bindungen). [30]

Tabelle 4: Isomere des Pentanol

<table>
<thead>
<tr>
<th>n-Amylalkohol</th>
<th>sec- Amylalkohol</th>
<th>3- Amylalkohol</th>
<th>2- Methylbutylalkohol</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{H}_3 \text{C} \quad \text{H}_3 \text{C} \quad \text{H}_3 \text{C} \quad \text{H}_3 \text{C})</td>
<td>(\text{H}_3 \text{C} \quad \text{H}_3 \text{C} \quad \text{H}_3 \text{C} \quad \text{H}_3 \text{C})</td>
<td>(\text{H}_3 \text{C} \quad \text{H}_3 \text{C} \quad \text{H}_3 \text{C} \quad \text{H}_3 \text{C})</td>
<td>(\text{H}_3 \text{C} \quad \text{H}_3 \text{C} \quad \text{H}_3 \text{C} \quad \text{H}_3 \text{C})</td>
</tr>
</tbody>
</table>

Wie in Kapitel 9.4 beschrieben, greift die Hydroxylgruppe des Alkohols das Carbonylkohlenstoffatom der Säure an. Daraus resultieren ebenso acht unterschiedliche Konstitutionsisomere der Essigsäurepentylester. [29]
Tabelle 5: Isomere der Essigsäurepentylester

<table>
<thead>
<tr>
<th>n- Amylace tat</th>
<th>2- Penty lac et</th>
<th>3- Penty lac et</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoamylacetat</td>
<td>1,1- Dimethylpropylacetat</td>
<td>2- Methylbutylacetat</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10.3 Vorkommen von Isoamylacetat

Bier:
Der Schwellenwert\(^9\) für Ester liegt sehr niedrig, deshalb stellt die Gruppe der Ester die hochstwahrscheinlich wichtigste Stoffgruppe für das Aroma für Bier dar unter anderem das Isoamylacetat, welches im Bier für das bananenartige Aroma sorgt. Erkannt wurde hierbei, dass der komplexe Vorgang der Gabe von Hefe während des Brauvorgangs dafür sorgt, dass höhere Alkohole gebildet werden, welche mit Acetyl-Coenzym A\(^{10}\) reagieren und so Ester bilden. Dieser Vorgang ist jedoch so komplex, dass im Folgenden darauf verzichtet wird, diesen näher zu erläutern. [31], [32]

Wein:
Auch im Wein prägen Ester das Aroma. So auch der Isoamylester. Wie beim Bier ist er hier für ein Bananen- und Birnenaroma verantwortlich. Vor allem ist er bei Weinen anzutreffen, welche einer Kohlensäuremischung bzw. einer Kaltgärung unterzogen wurden. [33], [34]

\(^9\)Ist die minimale Konzentration eines sensorisch aktiven Stoffes welche ein Lebewesen gerade noch wahrnehmen kann.

\(^{10}\)Ein Enzym mit aktivem Essigsäurerest
Bienen:
Isoamylacetat ist das Pheromon der Biene und wird von diesen entweder dazu genutzt, andere Bienen an einen bestimmten Ort zu führen bzw. zu locken oder um ein Warnsignal zu setzen.
Stechen Bienen zu, so produzieren sie Isoamylacetat. Dies führt dazu, dass weitere Bienen zur Verteidigung angeregt werden und ebenso zustechen. [35]

10.4 Verwendung von Isoamylacetat

Parfum:
Aufgrund des erwähnten niedrigen Schwellenwertes wird Isoamylacetat ebenso bei der Parfumherstellung verwendet. [29]

Atemschutztechnik:
Die Dämpfe des Isoamylacetats werden Bananengas genannt und zur Dichtheitsprüfung von Atemschutzmasken verwendet, da es sich hierbei um ein ungiftiges Gas handelt. [36]
10.5 Darstellung

Isoamylacetat wird durch eine Veresterung aus Essigsäure und Iso- Amylalkohol (3-Methyl-1-butanol) unter Zugabe von Schwefelsäure hergestellt. [29]

10.6 Reaktionsmechanismus

Abbildung 11: Reaktionsmechanismus Isoamylacetat (Quelle: wurde vom Autor selbst in ChemSketch erstellt)
10.7 Labordarstellung

10.8 Mikrowellendarstellung

Isoamylacetat soll in der Mikrowelle dargestellt werden und am Geruch identifiziert werden.

10.8.1 Protokoll

Allgemeines

Projektarbeit: Organische Synthesen in der Labormikrowelle

Protokoll

Geräte: CEM Mikrowelle Discover
Chemikalien: 3-Methylbutanol, konzentrierte Schwefelsäure, Eisessig
Bezeichnung: 3-Methylbutylacetat (IUPAC), Isoamylacetat
Darstellung aus: 3-Methylbutanol, Eisessig
Reaktionsart: Veresterung
Eigenschaften: klare, leicht gelbliche Lösung, starker Geruch nach Banane, schlecht löslich in Wasser

Bruttoreaktionsgleichung:

\[
\text{H}_2\text{C} \text{CH}_3 \text{CH}_2 \text{CH}_2 \text{OH} + \text{H}_2\text{C} \text{CH}_2 \text{CH}_3 \xrightarrow{\text{H}_2\text{SO}_4, \text{Silikagel, } \mu \text{W, } 130^\circ\text{C}} \text{H}_3\text{C} \text{CH}_3 \text{CH}_2 \text{CH}_2 \text{CH}_3 \text{COO} \text{CH}_3
\]

Physikalische Daten:

Summenformel: \(\text{C}_7\text{H}_{14}\text{O}_2 \)
Löslichkeit in Wasser: 2,12 \(\frac{\text{g}}{\text{L}} \) (19,4 °C)
Zündtemperatur: 335°C
Schmelzpunkt: -78°C
Molare Masse: 130,18 \(\frac{\text{g}}{\text{mol}} \)
Dichte: 0,87 \(\frac{\text{g}}{\text{mL}} \) (20°C)
pH-Wert: (H\text{O}) neutral
Siedepunkt: 142°C (1013 hPa)
Brechungsindex: 1,4 (Sigma Aldrich)

Verwendung:

1. Zur Dichtheitsprüfung von Gasmasken
2. Als Zusatzstoff in Parfum
3. Als Lösemittel
<table>
<thead>
<tr>
<th>Substanz</th>
<th>Piktogramme</th>
<th>Signalwort</th>
<th>H-Sätze</th>
<th>P-Sätze</th>
</tr>
</thead>
<tbody>
<tr>
<td>Essigsäure</td>
<td></td>
<td>Gefahr</td>
<td>226-314</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>280</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>301+330+331</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>305+351+338</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>309+310</td>
</tr>
<tr>
<td>3- Methylbuntanol</td>
<td></td>
<td>Achtung</td>
<td>226</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>332</td>
<td>304+340</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>335</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EUH066</td>
<td></td>
</tr>
<tr>
<td>Schwefelsäure konz.</td>
<td></td>
<td>Gefahr</td>
<td>290</td>
<td>280</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>314</td>
<td>301+330+331</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>305+351+338</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>309+310</td>
</tr>
<tr>
<td>Isoamylacetat</td>
<td></td>
<td>Achtung</td>
<td>226</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EUH066</td>
<td></td>
</tr>
<tr>
<td>tert-Butylmethylether</td>
<td></td>
<td>Gefahr</td>
<td>225</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>315</td>
<td>233</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>302+352</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>403+235</td>
</tr>
</tbody>
</table>
Synthese:
In das 10ml Reaktionsgefäß werden 2,0ml Essigsäure (35mmol), 1,4ml 3-Methylbutanol (12mmol), 10 Tropfen konzentrierte Schwefelsäure, 0,2g Silicagel-Perlen gegeben und ein Rührfisch zugesetzt.
Das Reaktionsgefäß wird mit einem Septum und Deckel verschlossen und in die Mikrowelle eingebracht. Anschließend wird das Reaktionsgemisch 15min bei 130°C erhitzt.
Nach Ablauf der Reaktionszeit wird das Gemisch auf 50°C abgekühlt und aus der Mikrowelle entnommen.

Methode: Standard
Temperatur: 130°C
Haltezeit: 15 Minuten

Aufarbeitung:

Isolierung:
In den Scheidetrichter werden 5ml MTBE (Methyl-tertiär-butylether) gegeben, ausgeschüttelt und anschließend die wässrige Phase abgetrennt. Anschließend wird die organische Phase über Na₂SO₄ getrocknet. Nachdem das Präparat getrocknet wurde, wird an einer Destillationsapparatur das MTBE abgezogen.

Im Rahmen der Projektarbeit wurde darauf verzichtet das Präparat weiter zu isolieren. Hier ging es primär um den Geruch des Esters welcher deutlich wahrzunehmen war.

Entsorgung:
Das erhaltene Isoamylacetat wird in den Abfall für halogenfreie Lösungmittel gegeben. Die wässrige Phase kann in den Abguss gegeben werden.
Qualitative Bestimmung:
Zur qualitativen Bestimmung des Isoamylacetats wurde der Brechungsindex bei 20°C am Refraktometer bestimmt.

Brechungsindex: 1,4 (Literaturwert, Sigma Aldrich)

10.8.2 Synthese und Versuchsbeobachtung

10.8.3 Versuchsauswertung

Ergebnis: Der Brechungsindex stimmte mit dem Literaturwert überein. Somit kann Isoamylacetat als nachgewiesen betrachtet werden.

<table>
<thead>
<tr>
<th>Brechungsindex Literatur: 1,4 (20°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brechungsindex Präparat: 1,4024 (20°C)</td>
</tr>
</tbody>
</table>

10.8.4 Zusammenfassung

Der Versuch zeigte, dass das Präparat in der Mikrowelle mit wenig Aufwand synthetisiert und durch den charakteristischen Geruch und den Brechungsindex auch eindeutig identifiziert werden konnte. [37], [38]
11. Benzylacetat

Allgemeines

11.1 Protokoll

Geräte: CEM Mikrowelle Discover
Chemikalien: Benzylalkohol (Phenylmethanol IUPAC), konzentrierte Schwefelsäure, Eisessig
Bezeichnung: Benzylacetat (IUPAC)
Darstellung aus: Essigsäure, Benzylacetat
Reaktionsart: Veresterung
Eigenschaften: farblose Flüssigkeit, starker Geruch nach Yasmin

Bruttoreaktionsgleichung:

\[\text{H}_3\text{C-} \overset{\text{O}}{\text{COOH}} + \overset{\text{OH}}{\text{CH}_3\text{C-}} \overset{\text{H}_2\text{SO}_4, \mu W, 130^\circ C}{\text{+}} \overset{\text{O}}{\text{C-CH}_3\text{O-}} \]

Physikalische Daten:

Summenformel: \(\text{C}_9\text{H}_{10}\text{O}_2 \)
Löslichkeit in Wasser: schwerlöslich (20°C)
Zündtemperatur: 460°C
Schmelzpunkt: -51°C
Molare Masse: \(150.17 \frac{\text{g}}{\text{mol}} \)
Dichte: 1.06 (20°C)
Siedepunkt: 205-207°C
Brechungsindex: 1,5006 (20°C)

Verwendung: 1. Riechstoff
2. Lösemittel
Reaktionsmechanismus:
Der Reaktionsmechanismus ist analog zu den bereits vorhandenen Mechanismen und wird an dieser Stelle deshalb nichtmehr aufgeführt. Mechanismus siehe Kapitel 9.4

Arbeitssicherheit:

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Piktogramme</th>
<th>Signalwort</th>
<th>H-Sätze</th>
<th>P-Sätze</th>
</tr>
</thead>
<tbody>
<tr>
<td>Essigsäure</td>
<td></td>
<td>Gefahr</td>
<td>226-314</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>280</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>301+330+331</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>305+351+338</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>309+310</td>
</tr>
<tr>
<td>Benzylalkohol</td>
<td></td>
<td>Achtung</td>
<td>302+332</td>
<td>271</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>304+340</td>
</tr>
<tr>
<td>Schwefelsäure konz.</td>
<td></td>
<td>Gefahr</td>
<td>290</td>
<td>280</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>314</td>
<td>301+330+331</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>305+351+338</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>309+310</td>
</tr>
<tr>
<td>Benzylacetat</td>
<td></td>
<td>Achtung</td>
<td>315</td>
<td>261</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>319</td>
<td>302+352</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>335</td>
<td>305+351+338</td>
</tr>
<tr>
<td>tert-Butylmethylether</td>
<td></td>
<td>Gefahr</td>
<td>225</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>315</td>
<td>233</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>302+352</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>403+235</td>
</tr>
</tbody>
</table>
Projektarbeit: Organische Synthesen in der Labormikrowelle

Synthese:
In das 10ml Reaktionsgefäss werden 2,0ml Essigsäure (35mmol), 1,2 ml Benzylalkohol (12mmol), 10 Tropfen konzentrierte Schwefelsäure, 0,2g Silicagel-Perlen gegeben und ein Rührfisch zugesetzt.
Das Reaktionsgefäss wird mit einem Septum und Deckel verschlossen und in die Mikrowelle eingebracht. Anschließend wird das Reaktionsgemisch 5min bei 130°C erhitzt. Nach Ablauf der Reaktionszeit wird das Gemisch auf 50°C abgekühlt und aus der Mikrowelle entnommen.

Methode: Standard
Temperatur: 130°C
Haltezeit: 5 Minuten

Aufarbeitung:
In einem Scheidetrichter werden 10ml einer 10%igen Natriumhydrogencarbonat- Lösung (NaHCO3) vorgelegt und das abgekühlte Reaktionsgemisch hinzugegeben. Bei diesem Vorgang setzt eine heftige Reaktion ein, welche auf die Neutralisation der Essigsäure beruht. Anschließend wird Wasser in den Scheidetrichter gegeben und die Benzylacetat-Phase von der wässrigen Phase getrennt.

Isolierung:
In den Scheidetrichter werden 5ml MTBE (Methyl-tertiär-butylether) gegeben, ausgeschüttelt und anschließend die wässrige Phase abgetrennt. Anschließend wird die organische Phase über Na2SO4 getrocknet. Nachdem das Präparat getrocknet wurde, wird an einer Destillationsapparatur das MTBE abgezogen.

Entsorgung:
Das erhaltene Benzylacetat wird in den Abfall für halogenfreie Lösemittel gegeben. Die wässrige Phase kann in den Abguss gegeben werden.

Qualitative Bestimmung:
Auf eine weitere qualitative Bestimmung wurde verzichtet, da kein blumiger Geruch festgestellt werden konnte.
11.2 Synthese und Versuchsbeobachtung:

Das Benzylacetat wurde in der Mikrowelle Discover von CEM, wie im vorherigen Protokoll beschrieben, hergestellt. Die Synthese wurde jedoch nicht erfolgreich abgeschlossen.

Versuchsauswertung:
Ergebnis: Es wurde kein blumiger Geruch festgestellt. Daraufhin wurde die Synthese verworfen und durch die Isoamylacetat-Synthese ersetzt.

Zusammenfassung:
Der Versuch verlief leider ohne erfolgreiches Ergebnis. Trotz versuchter Isolierung via Destillation konnte das Präparat nicht eindeutig am Geruch erkannt werden. Hier könnte in einer anderen Projektarbeit angeknüpft werden und versucht werden, das Präparat herzustellen. [38], [39]

11.3 Probleme und Fehler der Syntheseskripte von CEM

Fehler im CEM Versuchsprotokoll:

Im Folgenden werden Fehler aus dem CEM- Versuchsprotokoll aufgeführt und verbessert. Diese waren sowohl im Protokoll zu Isoamylacteat als auch im Protokoll zu Benzylacetat enthalten.

2. Laut CEM Versuchsvorschrift handelt es sich bei konzentrierter Schwefelsäure um eine leicht entzündliche und brennbare Substanz. Bei Schwefelsäure handelt es sich jedoch weder um eine leicht entzündliche, noch um eine leicht brennbare Substanz.
3. Laut CEM Versuchsvorschrift handelt es sich bei Isoamylacetat und Benzylacetat um einen Feststoff, der via Schmelzpunktanalyse qualifiziert werden soll. Jedoch handelt es sich bei Isoamylacetat und Benzylacetat nicht um Feststoffe, sondern um Flüssigkeiten, welche über den Brechungsindex identifiziert werden sollten.

12. Salicylsäuremethylester

12.1 Allgemeines

Salicylsäuremethylester, auch Methylsalicylat, ist der Methylester der Salicylsäure. Umgangssprachlich wird er auch als Wintergrünöl oder Gaultheriaöl bezeichnet, da es aus den Blättern der Wintergrünpflanze (Gattungen Pyrola) und der Scheinbeere (Gaultheria procumbens L.) isoliert werden kann. [40],[41]

Wintergrün, auch als niederkriechende Scheinbeere bekannt, ist ein beliebter immergrüner Bodendecker. Die Pflanze trägt weißlich bis rosafarbene Blüten, die dann zu leuchtend roten fleischigen Früchten heranreifen. Bricht man die Blätter, so strömt einem der charakteristische medizinisch-süßliche Geruch entgegen, der an Rheumasalbe erinnert. [41]

Salicylsäuremethylester ist eine farblose Flüssigkeit, reagiert aber mit Luftsauerstoff und verfärbt sich gelb bis rötlich. Er ist schwer löslich in Wasser, leicht löslich in Alkohol und Äther. Sein Geruch und Geschmack werden als angenehm gewürzhaft und süßlich beschrieben. [40],[42]

Salicylsäuremethylester ist für den Menschen giftig. Besonders bei oraler Verabreichung genügen sehr kleine Mengen. Ein einzelner Teelöffel (5 ml) Wintergrünöl enthält 7g Salicylate, was in etwa dreimondzwanzig 300 mg-Aspirin –Tabletten entspricht. Die niedrigste bisher bekannte tödliche Dosis beträgt 101 mg / kg Körpergewicht bei erwachsenen Menschen. Im April 2007 wurde der Tod der 17 Jährigen Langstreckenläuferin Alice Newmann auf eine Überdosis, verursacht durch den übermäßigen Einsatz von Lokalanästhetika, zurückgeführt. [44], [45]
Produktinformationen

<table>
<thead>
<tr>
<th>Grade</th>
<th>Ph Eur, BP, NF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synonyme</td>
<td>Salicylsäuremethylster, Gaultheriaol synthetisch, Wintergrünon synthetisch</td>
</tr>
<tr>
<td>Summenformel Hill</td>
<td>C₉H₈O₃</td>
</tr>
<tr>
<td>HS-Warennummer</td>
<td>2918 23 00</td>
</tr>
<tr>
<td>EG-Nummer</td>
<td>204-317-7</td>
</tr>
<tr>
<td>Molare Masse</td>
<td>152.15 g/mol</td>
</tr>
<tr>
<td>CAS-Nummer</td>
<td>119-39-8</td>
</tr>
</tbody>
</table>

Chemische und physikalische Daten

<table>
<thead>
<tr>
<th>Zündtemperatur</th>
<th>450 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Löslichkeit in Wasser</td>
<td>0.74 g/l (30 °C)</td>
</tr>
<tr>
<td>Schmelzpunkt</td>
<td>-8 °C</td>
</tr>
<tr>
<td>Molare Masse</td>
<td>152.15 g/mol</td>
</tr>
<tr>
<td>Dichte</td>
<td>1.184 g/cm³ (20 °C)</td>
</tr>
<tr>
<td>Siedepunkt</td>
<td>220 - 224 °C (1013 hPa)</td>
</tr>
<tr>
<td>Dampfdruck</td>
<td>0.13 hPa (20 °C)</td>
</tr>
<tr>
<td>Flammfest</td>
<td>99 °C</td>
</tr>
</tbody>
</table>

Sicherheitsinformationen gemäß GHS

<table>
<thead>
<tr>
<th>Gefahrenhinweis(e)</th>
<th>H302: Gesundheitsschädlich bei Verschlucken.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signalwort</td>
<td>Achtung</td>
</tr>
</tbody>
</table>

| Gefahren- | |
| Piktogramm | ![Exclamation Mark] |

| RTECS | VO4725000 |
12.2 Historisches

Zu Zeiten der amerikanischen Revolution wurden die Blätter ebenfalls als Ersatz für den damals knapp gewordenen Tee verwendet. [46]
12.3 Natürlicher Vorkommen

Eine Vielzahl von Pflanzen produziert Salicylsäuremethylester, allerdings oft nur in sehr geringen Mengen. Er dient als Schutz vor Fressfeinden, um bei Befall Insekten anzulocken welche die Schädlinge fressen, oder aufgrund seines pheromon-ähnlichen Aufbaus um andere Pflanzen vor Pathogenen\(^\text{11}\), wie zum Beispiel das Tabakmosaikvirus, zu warnen.

Es gibt allerdings auch Pflanzen, die größere (reichbare) Mengen produzieren:

- die meisten Spezies der Familie der *Ericaceae* (Heidekrautgewächse), besonders die des Genus *Pyrola* (Wintergrün).
- manche Spezies der *Gaultheria* (Wintergrünsträucher) in der Familie der *Ericaceae* (Heidekrautgewächse).
- manche Spezies der *Betula* (Birken) in der Familie *Betulaceae* (Birkengewächse).
- Walnussbäume, als Reaktion auf Stress.

[47]

12.4 Verwendung

Während Salicylsäuremethylester außerhalb der EU nahezu allgegenwärtig ist, beschränkt sich bei uns sein Einsatz hauptsächlich in der sogenannten Alternativmedizin. Hier findet er Verwendung als Badezusatz oder Salbe, hauptsächlich zur Linderung rheumatischer Beschwerden. [48], [46]

\(^{11}\) Organismen oder Toxine die Infektionen hervorrufen können
In Amerika und Skandinavien werden auch Kautabak, Smokeless Tobacco und Snus\(^{12}\) in der Geschmacksrichtung „Wintergreen“ häufig angeboten. [45]

Landwirtschaftliche Verwendung findet Salicylsäuremethylester als Geruchsmaskierungs-mittel bei Pestiziden, um den Eigengeruch von Organophosphatverbindungen zu überdecken. [48]

Von dem Einsatz als Duftstoff abgesehen, wird er beim Kunstdruck als Transferlösung beim Heißpressen, sowie um in Druckern (zumindest vorübergehend) die Elastizität alter Gummirollen wiederherzustellen.

Wegen seines hohen Brechungsindexes wird er in der Mikroskopie und in der Immunhistochemie (IHC) benutzt. Zusammen mit Alkohol wird er hier auch dazu verwendet, Präparate zu entfärben. [49]

Kleine Mengen von Salicylsäuremethylester dienen beim Transport von Eisessig dazu, dessen Gefrierpunkt zu senken.

Wegen seiner großen Ähnlichkeit bezüglich der chemischen und physikalischen Eigenschaften mit dem Kampfstoff Senfgas wurde er bei früheren Tests als Simulant dafür eingesetzt. [48]

Aufgrund seiner antiseptischen Wirkung ist er bis heute Bestandteil der „Listerine“-Mundspülung des US-amerikanischen Herstellers Johnson & Johnson.

Pharmazeutische Anwendung:

Salicylsäuremethylester kann als Wickel oder Ölbad zur Leberstimulation eingesetzt werden. Ätherisches Wintergrünöl wird in der Aromatherapie als beruhigend und sedierend wirkendes Öl eingesetzt. Es kann bei innerer Unruhe und überreizten Nerven als Massageöl, in der Duftlampe oder als Zusatz für Badeöle verwendet werden. [50], [51], [53]

Mesotan

\(^{12}\)Oraltabak, wird zwischen Zahnfleisch und Oberlippe gelegt
Unerwünschte Wirkungen und Kontraindikationen:
Allgemein muss reiner Salcylsäuremethylester mit den EU- und GHS-Gefahrstoffkennzeichen für gesundheitsschädlich gekennzeichnet werden. Salcylsäuremethylester kann über die Haut (perkutan) oder auch durch Schlucken (oral) aufgenommen werden und hier zu gesundheitlichen Schäden und vergiftungsähnlichen Zuständen führen. Der reine Stoff kann Augen, Haut und auch Atemorgane reizen. [45], [53]
Vorsicht in der Anwendung von Wintergrün ist geboten bei Personen, die eine Allergie oder Unverträglichkeit auf Salicylate haben, sowie bei Asthmatikern. Ebenso ist das ätherische Wintergrünöl nicht für Kleinkinder oder Epileptiker geeignet. [56]

12.5 Darstellung

Salcylsäuremethylster kann als Naturprodukt aus den Blättern des in Nordamerika und Kanada heimischen Strauches Gaultheria procumbens (aus der Familie der Ericaceae) destillativ gewonnen werden. [53]
Alternativ wird der naturidentische Stoff durch Veresterung von Salcylsäure mit Methanol gewonnen, wobei Schwefelsäure als Katalysator verwendet wird. [52]

12.5.1 Destillative Darstellung

Das ätherische Wintergrünöl wird durch Wasserdampfdestillation eines wässrigen Auszuges aus den Blättern des Amerikanischen Wintergrün gewonnen. Dabei dient heißer Wasserdampf als Trägerstoff für die leicht flüchtigen organischen Komponenten. Da sich die organischen Bestandteile des ätherischen Öles und des Wassers nicht mischen, findet beim Abkühlen eine spontane Phasentrennung statt, sodass das reine ätherische Öl abgeschieden werden kann. Die Ausbeute beträgt etwa 0,8%. Das ätherische Wintergrünöl ist hoch fluide, farblose bis hellrosa Flüssigkeit. In geringeren Konzentrationen sind in der Organischen Phase auch Limonen- und Leinöl enthalten. [45], [41], [58]

13 dünnflüssige
12.5.2 Reaktionsmechanismus

Abbildung 12: Reaktionsmechanismus Salicylsäuremethylester (Quelle: [58])

12.6 Labor-Synthese

Die Labor-Synthese von Salicylsäuremethylester ist relativ unkompliziert und ungefährlich, sofern die Sicherheitshinweise der verwendeten Chemikalien berücksichtigt werden, und somit auch als Schülerversuch geeignet.

Wie bei allen Duftestern kann die Identifizierung des entstandenen Produkts olfaktorisch14 erfolgen, wodurch von aufwändigen Nachweismethoden abgesehen werden kann.

Allerdings besitzt Salicylsäuremethylester mit Zucker vermischt die Eigenschaft der Tribolumineszenz15.

Zerreibt man also eine Salicylsäuremethylester-Zucker-Mischung in einem dunklen Raum kann man blaue Funken beobachten. [57]

14 D.h. durch den Geruch.

15 D.h. das Auftreten einer „kalten Lichtemission“ bei starker mechanischer Beanspruchung von Festkörpern.
12.6.1 Protokoll

Bezeichnung: Salicylsäuremethylster, Gaultheriaöl synthetisch, Wintergrünöl synthetisch

Darstellung aus: Salicylsäure und Methanol

Reaktionsart: Veresterung (Acylierung, Acetylierung)

Eigenschaften: schwach rosa Flüssigkeit, intensiver Geruch, verdampft das Lösungsmittel so kristallisiert die Substanz in feinen Nadeln aus.

Arbeitssicherheit:

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Piktogramme</th>
<th>Signalwort</th>
<th>H-Sätze</th>
<th>P-Sätze</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salicylsäure</td>
<td></td>
<td>Gefahr</td>
<td>302 / 318</td>
<td>261/ 304+340/302+360/305+351+338/301+330+31/313</td>
</tr>
<tr>
<td>Schwefelsäure (94-96%)</td>
<td></td>
<td>Gefahr</td>
<td>314/290</td>
<td>280-301+330+331-309-310-305+351+338</td>
</tr>
<tr>
<td>Methanol</td>
<td></td>
<td>Gefahr</td>
<td>225-331-311-301-370</td>
<td>210-233-280-302+352</td>
</tr>
<tr>
<td>Salicylsäure-methylester</td>
<td></td>
<td>Achtung</td>
<td>302-315-319-335</td>
<td>261-305+351+338</td>
</tr>
</tbody>
</table>
Physikalische Daten: Smp: 220-224°C

Bruttoreaktionsgleichung:

\[
\text{COOH} + \text{HOCH}_3 \rightarrow \text{COOCH}_3 + \text{H}_2\text{O}
\]

Abbildung 13: Bruttoreaktionsgleichung Salicylsäuremethylester (Quelle: [45])

12.6.1.1 Herkömmliche Synthese

Geräte
Becherglas, Heizplatte mit Magnetruhrer, Rührfisch

Chemikalien
Salicylsäure, Methanol, konzentrierte Schwefelsäure

Versuchsdurchführung
In einem 100mL-Becherglas werden 5,0 mL Methanol 3,40 mg Salicylsäure vermischt und mit einer Pasteurpipette unter Rühren 3 Tropfen konzentrierte Schwefelsäure zugesetzt. Dann stellt man das Becherglas auf den Magnetruhrer und schaltet diesen an. Nach weniger als einer Minute tritt der charakteristische Geruch von Salicylsäuremethylester auf. Nach zwei Minuten fallen feine weiße Nadeln aus.

Rührgeschwindigkeit: niedrig
Heizstufe: 1 von 10
Temperatur im Reaktionsgefäß: ~ 60°C

Anmerkung:
12.6.1.2 Mikrowellen-Synthese

Geräte:
CEM Mikrowelle

Chemikalien:
Salicylsäure, Methanol, konzentrierte Schwefelsäure

Synthese:
Aufgrund des Defektes konnte kein endgültiges Syntheserezept für die Mikrowelle ausgearbeitet werden. Die Parameter für die durchgeführten Synthesen waren wie folgt:

Erste Durchführung:
In ein 35mL-Reaktionsgefäß wird ein Rührfisch gegeben und 10mL Methanol und 5 Tropfen konzentrierte Schwefelsäure vorgelegt. Unter Rühren (Magnetrihrrer) werden 0,025 Mol Salicylsäure eingetragen. Das Reaktionsgefäss wird in die Mikrowelle gestellt und die Synthese mit der unten beschriebenen Methode gestartet.

Methode: Standard
Temperatur: 75°C
Haltezeit: 5 Minuten

Zweite Durchführung:
In ein 35mL-Reaktionsgefäß wird ein Rührfisch gegeben und 5mL Methanol und 3 Tropfen konzentrierte Schwefelsäure vorgelegt. Unter Rühren werden 3,50 g Salicylsäure eingetragen. Das Reaktionsgefäß wird in die Mikrowelle gestellt und die Synthese mit der unten beschriebenen Methode gestartet.

Methode: Standard
Temperatur: 55°C
Haltezeit: 5 Minuten

Aufarbeitung:
Keine
(Theoretisch könnte zur Trennung das Gemisch am Rotationsverdampfer destilliert werden. Aufgrund der geringen Mengen wurde davon jedoch abgesehen.)
Isolierung:
Keine
(Aus den gleichen Gründen wie oben wurde vom ausschütteln im Scheidetrichter mit Tetrachlorkohlenstoff und anschließendem ausschütteln mit NaHCO$_3$ abgesehen)

Reinigung:
Keine
(Ebenso wurde auf die Zugabe von Na$_2$SO$_4$ als Trockenmittel und anschließender destillativer Trennung abgesehen)

Entsorgung:
Die Mutterlauge aus der Synthese wird mit technischer Soda neutralisiert und dem Abwasser zugeführt.

12.6.1.3 Versuchsauswertung
Trotz der Probleme bei der Mikrowellensynthese kann die Herstellung von Salicylsäuremethylester als eine einfach umzusetzende Synthese angesehen werden. Innerhalb von sehr kurzer Zeit konnte, auch ohne Mikrowelle, der charakteristische Geruch festgestellt werden.

12.6.1.3.1 Geruch
Wie bei allen Duftestern, ist auch bei Salicylsäuremethylester eine erste Identifizierung ohne weitere Hilfsmittel möglich. So kann eine direkte Beurteilung des Präparates schnell und einfach erfolgen.

12.6.1.3.2 Brechungsindex
Um das Ergebnis zu verifizieren wurde zusätzlich der Brechungsindex des Präparates gemessen und mit dem Literaturwert verglichen.
Literaturwert : $n_D^{20} = 1,536$ (Sigma Aldrich)
Gemessener Wert: $n_D^{20} = 1,4202$
Die Abweichung lässt sich dadurch erklären, dass auf eine Reinigung und Trocknung des Präparates verzichtet wurde.
13. Acetylsalicylsäure

13.1 Einleitung
Im folgenden Kapitel wird das Hauptaugenmerk auf den bedeutenden pharmazeutischen Wirkstoff Acetylsalicylsäure (ASS) gelegt, auch besser bekannt als Aspirin. Aspirin ist der Handelsname von Bayer.
Zur Herstellung wird als Ausgangsprodukt Salicylsäure verwendet.

![Strukturformel Salicylsäure und Acetylsalicylsäure](image)

Abbildung 14: Strukturformel Salicylsäure und Acetylsalicylsäure (Quelle: wurde vom Autor selbst in ChemSketch erstellt)

Im Gegensatz zur Herstellung des Wintergrünöls (Salicylsäuremethylester) wird bei der Herstellung von Acetylsalicylsäure Salicylsäure nicht mit Methanol an der Hydroxygruppe der Carboxylgruppe verestert, sondern mit protoniertem Essigsäureanhydrid an der „allein stehenden“ Hydroxygruppe.
Reaktionsgleichung: Herstellung Wintergrünöl

\[
\text{Salicylsäuremethylester}
\]

Reaktionsgleichung: Herstellung Acetylsalicylsäure

\[
\text{Acetylsalicylsäure}
\]

Abbildung 15: Reaktionsgleichung Wintergrünöl und Acetylsalicylsäure (Quelle: wurde vom Autor selbst in ChemSketch erstellt)

Somit reagiert Salicylsäure bei der Herstellung von ASS als Alkohol und nicht, wie im Falle der Herstellung von Wintergrünöl, als Säure.

13.2 Geschichte

Schmerzen zeigen uns auf, dass unser Körper mit Missständen zu tun hat.

Weidenrinde diente in früheren Zeiten zur Schmerzbehandlung. Heute weiß man, dass in dieser Pflanze Salicylsäure enthalten ist, welche die schmerzlindernde Wirkung besitzt. 1828 konnte J.A. Buchner aus der Weidenrinde eine kristalline, gelbliche Substanz extrahieren. Er nannte sie Salin wegen ihres salzartigen Aussehens.

1838 konnte R. Piria diese Substanz zur Salicylsäure modifizieren. C.F. Gerhardt konnte im Jahre 1853 Acetylsalicylsäure herstellen, aber sie war weder chemisch rein noch stabil und somit wertlos.

Die sehr unverträgliche Salicylsäure wird heute nur noch in äußerer Anwendung benutzt, z.B. in Mobilat Schmerzgel. Interessant ist, dass selbst in dem Raumfahrtschiff ISS Aspirin in der Bordapotheke vorhanden ist. [59], [60], [61]

Dies ist ein eindrucksvolles Beispiel dafür, dass Chemie in der Pharmazie sehr wichtig ist, da ASS viel verträglicher ist als Salicylsäure.

13.3 Wirkungsweise
ASS ist ein Medikament, das fiebersenkend (antipyretisch), schmerzlindernd (analgetisch) und entzündungshemmend (antiphlogistisch) wirkt. Zu Beginn wurde ASS, ohne dessen Wirkung im Körper genau zu kennen, verabreicht und selbst heute kennt man noch nicht den genauen Wirkungsmechanismus. 1971 hat J.A. Vane entdeckt, dass ASS die Synthese von bestimmten Botenstoffen (Prostaglandinen) hemmt, die für die Verengung von Venen und der Aktivität der Blutplättchen verantwortlich sind (also für Fieber, Schmerz und Entzündungen). Ihm wurde 1982 der Nobelpreis für Medizin verliehen. [59], [61]
13.4 Bedeutung und Anwendung

13.5 Synthese in der Labormikrowelle

13.5.1 Allgemeines

13.5.2 Protokoll

Bezeichnung: 2-Acetoxybenzosäure [IUPAC], ASPIRIN, ASS
Darstellung aus: Salicylsäure und Essigsäureanhydrid
Reaktionsart: Veresterung (Acylierung, Acetylierung)
Eigenschaften: Farblos, geruchlos, schwach sauer schmeckend; nadelförmig oder in Plättchen kristallisierende Substanz; in kaltem Wasser schlecht, in heißem Wasser und Alkohol gut löslich.

Arbeitssicherheit:

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Piktogramme</th>
<th>Signalwort</th>
<th>H-Sätze</th>
<th>P-Sätze</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salicylsäure</td>
<td></td>
<td>Gefahr</td>
<td>302 / 318</td>
<td>261/ 304+340/302+360/305+351+338/301+330+31/313</td>
</tr>
<tr>
<td>Phosphor-säure (85%)</td>
<td></td>
<td>Gefahr</td>
<td>3114/290</td>
<td>305+351+338/280/301+330+331</td>
</tr>
<tr>
<td>Essigsäure-anhydrid</td>
<td></td>
<td>Gefahr</td>
<td>226/332/302/314/335</td>
<td>208/301+330+331/305+351+338/309+310/301+330+331/331</td>
</tr>
<tr>
<td>Acetylsalicylsäure</td>
<td></td>
<td>Achtung</td>
<td>302/319/335/315</td>
<td>- - -</td>
</tr>
</tbody>
</table>
Physikalische Daten: Fp: 135°C

Literaturstelle: Wettbewerbsaufgabe bei der nationalen Runde des Grand Prix Chimique 1991 bei der HOECHST AG in Frankfurt und 2009 an der Hohentwiel-Gewerbeschule in Singen

Verwendung: Bedeutender pharmazeutischer Wirkstoff

Bruttoreaktionsgleichung:

\[
\begin{align*}
\text{O} & \quad \text{O} \\
\text{H} & \quad \text{H} \\
\text{C} & \quad \text{C} \\
\text{C} & \quad \text{C} \\
\text{OH} & \quad \text{OH} \\
\text{O} & \quad \text{O} \\
\text{CH}_3 & \quad \text{CH}_3 \\
\text{O} & \quad \text{O} \\
\text{C} & \quad \text{C} \\
\text{C} & \quad \text{C} \\
\text{H} & \quad \text{H}
\end{align*}
\]

Synthese:
In das 35mL-Reaktionsgefäß wird ein Rührfisch gegeben und 10mL Essigsäureanhydrid und 5 Tropfen Phosphorsäure (w=0,85) vorgelegt. Unter Rühren (mit einem Magnetrührer) werden 0,025 Mol Salicylsäure eingebracht. Das Reaktionsgefäß wird in die Mikrowelle gestellt und die Synthese mit der unten beschriebenen Methode gestartet.

Methode: Standard
Temperatur: 75°C
Haltezeit: 5-10 Minuten

Aufarbeitung:
Projektarbeit: Organische Synthesen in der Labormikrowelle

Isolierung:

Reinigung:
Auf eine Aufreinigung des Präparats wird verzichtet, da durch die ohnehin kleine Menge an eingesetzter Salicylsäure der Verlust zu groß wäre.

Entsorgung:
Die Mutterlauge aus der Synthese wird mit technischer Soda neutralisiert und dem Abwasser zugeführt.

Reinheitsprüfungen:

a.) Dünnsschichtchromatographie
Stationäre Phase: a.) Aluminiumoxid mit Fluoreszenzindikator oder
 b.) Kieselgel mit Fluoreszenzindikator

 für b.) Ethylacetat : Methanol : konz. Ammoniak = 80 : 19 : 1

Prüflösungen: Jeweils ca. 1 %ige Lösungen in Aceton oder Methanol von:
1. Acetylsalicylsäure (Reinsubstanz)
2. Salicylsäure (Reinsubstanz)
3. Präparat

Visualisierung: Im UV-Licht bei einer Wellenlänge von 254 nm (mit Bleistift markieren).
Die R$_f$-Werte werden ermittelt.
b.) Fotometrische Gehaltsbestimmung

Es wird eine Stammlösung mit 50 mg/100mL Salicylsäure in ca. 0,1 M Natronlauge hergestellt und daraus eine Standardlösung mit 5 mg/100mL Salicylsäure. Die Kalibrierkurve wird durch Zweipunkt-Kalibrierung zwischen der Blindprobe und der Standardlösung festgelegt.

Als Blindprobe für alle Messungen dient die verwendete Natronlauge. Die Messungen erfolgen bei 295 nm.

Von dem Präparat werden ca. 100 mg genau eingewogen und in ca. 0,1 M Natronlauge zu 250mL gelöst (im 250mL-Messkolben). Nach 15 Minuten Standzeit werden von dieser Lösung 10,00mL mit der Bürette abgemessen und mit Natronlauge zu 100mL im Messkolben verdünnt. (\(\frac{1}{25}\) der Konzentration in der Ausgangslösung).

Die Konzentration an Salicylsäure in dieser Messlösung wird über die Kalibrierkurve ermittelt.

Berechnung:

\[
\text{Salicylsäure}_{\text{Kalibrierkurve}} \times 25 = \text{mg Salicylsäure}_{\text{gefunden}}
\]

\[
\frac{\text{mg Salicylsäure}_{\text{gefunden}} \times M_{\text{Acetylsalicylsäure}}}{M_{\text{Salicylsäure}}} = \text{mg Acetylsalicylsäure}_{\text{gefunden}}
\]

\[
\frac{\text{mg Einwaage}_{\text{Präparat}}}{\text{mg Acetylsalicylsäure}_{\text{gefunden}}} = 100\% \quad \text{und} \quad \frac{\text{mg Acetylsalicylsäure}_{\text{gefunden}}}{\text{mg Einwaage}_{\text{Präparat}}} = x \%.
\]

c.) Schmelzpunkt: \(F_p = 135\, ^{\circ}\text{C}\) [63]

16 Die Natronlauge muss nicht eingestellt werden. Es müssen jedoch alle Lösungen mit der gleichen Natronlauge angesetzt werden.

17 In der Lösung liegt Natriumsalicylat vor.

18 Die Linearität über diesen Konzentrationsbereich wurde geprüft und ist gegeben.

19 Die Acetylsalicylsäure wird verseift; es liegt also Natriumsalicylat und Natriumacetat vor. Bei der Messwellenlänge von 295 nm absorbiert nur Salicylat.

20 Ergibt sich ein Gehalt >100% liegt, neben Acetylsalicylsäure, noch eine Verunreinigung durch Salicylsäure vor.
13.5.3 Synthese und Versuchsbeobachtung

ASS1
Einwaage Salicylsäure: 3,42 g
10mL Essigsäureanhydrid
5 Tropfen Phosphorsäure (w=0,85)

Mikrowelleneinstellung:
Methode: Standard
Temperatur: 75°C
Haltezeit: 10 Minuten

Die Synthese verlief problemlos und nach Zugabe von insgesamt 27,5mL Wasser ist ein weißer Feststoff auskristallisiert. Dieser wurde, wie im Protokoll beschrieben, isoliert und getrocknet.

ASS2
Bei der zweiten Synthese wurde die Einwaage an Salicylsäure erhöht um festzustellen, ob dies die Ausbeute erhöhen wird.

Einwaage Salicylsäure: 5,46 g
10 mL Essigsäureanhydrid
5 Tropfen Phosphorsäure (w=0,85)
Mikrowelleneinstellung:
Methode: Standard
Soll-Temperatur: 75°C
Soll-Haltezeit: 10 Minuten

ASS3
Bei der dritten Synthese wurde die Einwaage an Salicylsäure nochmals erhöht und etwas mehr Phosphorsäure zugegeben, um die Ausbeute mit ASS1 und ASS2 vergleichen zu können.

Einwaage Salicylsäure: 6,80g
10mL Essigsäureanhydrid
8 Tropfen Phosphorsäure (w=0,85)

Mikrowelleneinstellung:
Methode: Standard
Temperatur: 75°C
Haltezeit: 10 Minuten

ASS4
Dieses Mal wurde weniger Salicylsäure eingewogen als beim dritten Synthese-Versuch, da bei einer Einwaage von 6,80g nicht alles umgesetzt wurde und durch mangelnden Platz im Reaktionsgefäß auch nicht mehr Essigsäureanhydrid eingesetzt werden konnte.

Einwaage Salicylsäure: 5,23g
10mL Essigsäureanhydrid
5 Tropfen Phosphorsäure (w=0,85)

Mikrowelleneinstellung:
Methode: Standard
Soll-Temperatur: 75°C
Soll-Haltezeit: 10 Minuten

Die Mikrowelle hat bis 90°C hochgeheizt, angezeigt, dass sie die gewünschte Temperatur erreicht hat (es waren jedoch 75°C als Halte-Temperatur eingestellt), selbstständig innerhalb von fünf Minuten auf 75°C heruntergekühlt und die Temperatur für fünf Minuten gehalten. Danach wurde die Synthese manuell abgebrochen. Es wurden zwar alle Edukte umgesetzt, aber nach Zugabe von ausreichend Wasser ist kein Feststoff auskristallisiert. Stattdessen hat sich nur eine ölige Phase gebildet.

Probelauf 10mL-Gefäß
Es wurde vermutet, dass die oben beschriebenen Probleme mit der Mikrowelle auf die 35mL-Gefäß zurückzuführen sind. Deshalb wurde ein Probelauf mit einem 10mL-Gefäß gestartet und das Reaktionsgefäß zu einem Viertel mit Salicylsäure gefüllt und bis zur Hälfte mit Essigsäureanhydrid aufgefüllt. Es wurden ca. 2 Tropfen Phosphorsäure zugegeben.

Mikrowelleneinstellung:
Methode: Standard
Soll-Temperatur: 75°C
Bei der direkten Eingabe über die Mikrowelle stieg die Temperatur bis 82°C an. Die Synthese wurde manuell abgebrochen.

Die Mikrowelle wurde anschließend mit einem PC verbunden und die Einstellungen über diesen getätigt. Die Menge an eingesetzten Chemikalien war vergleichbar mit dem Probelauf ohne Computersteuerung.

Die Temperatur wurde mit Computerunterstützung relativ konstant bei 75°C gehalten. Die Synthese ist aber trotzdem misslungen, da nach Zugabe von Wasser kein Feststoff auskristallisiert ist, sondern sich wie bei ASS4 nur eine ölige Phase gebildet hat. An diesem Punkt war zu vermuten, dass die misslungene Synthese eventuell auf die sehr geringe Menge an eingesetzten Edukten zurückzuführen ist, da mit einem 10mL-Gefäß gearbeitet wurde.

ASS5

Aus den gerade genannten Gründen wurde eine Synthese in einem 35mL-Gefäß mit Computerunterstützung gestartet.

Einwaage Salicylsäure: 3,69g
10mL Essigsäureanhydrid
5 Tropfen Phosphorsäure (w=0,85)

Mikrowelleneinstellung
Methode: Standard
Soll-Temperatur: 75°C
Soll-Haltezeit: 10 Minuten

Die Synthese konnte nicht durchgeführt werden, da die Mikrowelle nicht mehr geschlossen werden konnte. Sie wurde eingeschickt und repariert.
Projektarbeit: Organische Synthesen in der Labormikrowelle

Probelauf ASS

Nachdem die Mikrowelle repariert worden war, wurde ein weiterer Syntheseversuch in einem 35mL-Reaktionsgefäß durchgeführt. Dieser Probelauf sollte lediglich dazu dienen, die Funktionalität der Mikrowelle zu überprüfen.

Einwaage Salicylsäure: 3,84g
10mL Essigsäureanhydrid
5 Tropfen Phosphorsäure (w=0,85)

Mikrowelleneinstellung:
Methode: Standard
Temperatur: 75°C
Haltezeit: 10 Minuten

Die Mikrowelle hat die Temperatur erst bei ca. 82°C relativ konstant gehalten. Die Temperatur ist aber innerhalb von acht Minuten auf 75°C abgesunken. Bei 70°C wurde die Mikrowelle geöffnet. Die Edukte im Reaktionsgefäß wurden nicht vollständig umgesetzt, weshalb mit einem herkömmlichen Magnetrührer diese nochmals gut durchmischt wurden. Anschließend wurde das Reaktionsgemisch erneut in der Mikrowelle erhitzt.

Mikrowelleneinstellung:
Methode: Standard
Temperatur: 75°C
Haltezeit: 5 Minuten

Die Synthesetemperatur wurde relativ konstant bei 75°C gehalten und das Reaktionsgefäß konnte bei 70°C aus der Mikrowelle entnommen werden. Nun haben sich die Edukte vollständig umgesetzt. Nach Zugabe von demineralisiertem Wasser ist zunächst nichts auskristallisiert, obwohl reine Acetylsalicylsäure noch zusätzlich als Impfkristall hinzugegeben wurde. Erst nach ca. 30 Minuten ist ein weißer, kristalliner Feststoff auskristallisiert.

Zur Überprüfung, ob es sich bei dem auskristallisiertem Feststoff wirklich um Acetylsalicylsäure und nicht etwa um Salicylsäure handelt, wurden wenige Tropfen Eisen(III)-Lösung auf eine Spatelspitze des Präparats gegeben. Es hat sich sofort ein
kräftiger, violetter Farbstoff gebildet. Nähere Informationen zur Durchführung der Vorprobe mit Eisen(III)ionen sind im Kapitel „13.5.4.1 Qualitatisiver Nachweis“ zu finden. Aufgrund der Bildung des farbintensiven Farbstoffs kann davon ausgegangen werden, dass zum Großteil nur Salicylsäure auskristallisiert ist und nicht die gewünschte Acetylsalicylsäure.

Da auch bei weiteren Probeläufen (Synthese von Wintergrünöl etc.) Probleme mit der Mikrowelle auftraten und die Edukte nicht vollständig umgesetzt wurden, obwohl dies bei den vorherigen Versuchen der Fall war, wurde die Vermutung angestellt, dass der Magnetrührer nicht richtig funktioniert. Das weitere Vorgehen wird im Kapitel „13.5.5 Probleme“ aufgeführt.

13.5.4 Versuchsauswertung

Zur Versuchsauswertung wurden nur ASS1 und ASS2 herangezogen, da bei den restlichen Versuchen entweder die Edukte nicht umgesetzt wurden oder kein Feststoff auskristallisiert ist.
13.5.4.1 Qualitativer Nachweis

Vorprobe mit Eisen(III)-Salzlösung

ASS1

Nach Zugabe von wenigen Tropfen Ammoniumeisen(III)sulfat-Lösung zu ASS1 war eine kaum zu erkennende violette Färbung zu sehen. Als Vergleich wurde derselbe Versuch mit reiner Salicylsäure durchgeführt und es war ein deutlicher Unterschied zu erkennen.

Abbildung 16: ASS1 mit Eisen(III)ionen-Lösung

Abbildung 17: reine Salicylsäure mit Eisen(III)ionen-Lösung

ASS2

Die Vorprobe wurde bei ASS2 wiederholt und es war eine identische Färbung wie bei ASS1 zu erkennen.

Ergebnis

Bei beiden Präparaten wurde die Salicylsäure beinahe vollständig umgesetzt. Ob es sich dabei um Acetylsalicylsäure handelt, wurde bei den nächsten Reinheitsprüfungen geklärt.
Dünnschichtchromatographie

Abbildung 18: DC-Platte ASS1

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Rf-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetylsalicylsäure</td>
<td>$\frac{3,3\text{cm}}{5,6\text{cm}} = 0,59$</td>
</tr>
<tr>
<td>Salicylsäure</td>
<td>$\frac{1,6\text{cm}}{5,6\text{cm}} = 0,29$</td>
</tr>
<tr>
<td>Präparat</td>
<td>$\frac{3,2\text{cm}}{5,6\text{cm}} = 0,57$</td>
</tr>
</tbody>
</table>
Abbildung 19: DC-Platte ASS2

Acetylsalicylsäure (Reinsubstanz): \(\text{R}_f\)-Wert = \(\frac{3,2\text{cm}}{5,3\text{cm}} \) = 0,60

Salicylsäure (Reinsubstanz): \(\text{R}_f\)-Wert = \(\frac{1,3\text{cm}}{5,3\text{cm}} \) = 0,25

Präparat: \(\text{R}_f\)-Wert = \(\frac{3,2\text{cm}}{5,3\text{cm}} \) = 0,60

Ergebnis

Bei beiden Präparaten ist Acetylsalicylsäure entstanden, da die \(\text{R}_f\)-Werte der Präparate und der Reinsubstanz im ersten Fall nahezu und im zweiten Fall exakt übereinstimmen. Außerdem konnte in beiden Fällen keine Salicylsäure mehr nachgewiesen werden, da kein Substanzfleck auf der DC-Platte zu erkennen ist.
13.5.4.2 Quantitative Bestimmung

Fotometrische Gehaltsbestimmung

Wie im entsprechenden Protokoll beschrieben, wurden eine Stamm- und eine Standardlösung mit Salicylsäure angesetzt. Von beiden Präparaten wurden jeweils genau 100,0mg in einen 250mL-Kolben eingewogen und mit 0,1M Natronlauge aufgefüllt. Nach 15 Minuten Standzeit wurde in beiden Fällen 10,00mL mit einer Bürette abgemessen und zu 100mL mit der gleichen Natronlauge verdünnt.

Abbildung 20: Kalibrierkurve „Fotometrische Gehaltsbestimmung ASS“
Messwerte

Standardlösung:
1. E=1,219
2. E=1,222
3. E=1,244
Mittelwert: E=1,233

ASS1
1. E=0,677
2. E=0,677
3. E=0,677
Mittelwert: E=0,677 \(\rightarrow\) 2,8 mg Salicylsäure (aus Kalibrierkurve abgelesen)

ASS2
1. E=0,670
2. E=0,667
3. E=0,666
Mittelwert: E=0,668 \(\rightarrow\) 2,8 mg Salicylsäure (aus Kalibrierkurve abgelesen)

Die Kalibrierkurve wurde mit Hilfe der Zwei-Punkt-Kalibrierung zwischen der Blindprobe und der Standardlösung erstellt. Mit den Messergebnissen der beiden Präparate wurde in beiden Fällen 2,8 mg Salicylsäure gefunden. Der ASS-Gehalt der beiden Präparate wird im Folgenden berechnet.
Berechnung

ASS1:

\[
2,80 \text{ mg} \times 25 = 70,0 \text{ mg} \text{ Salicylsäure gefunden}
\]

\[
\frac{70,0 \text{ mg} \times 180,15 \text{ g/mol}}{138,12 \text{ g/mol}} = 91,3 \text{ mg Acetylsalicylsäure gefunden}
\]

100mg Acetylsalicylsäure = 100%

91,3mg Acetylsalicylsäure = 91,3%

ASS2:

\[
2,80 \text{ mg} \times 25 = 70,0 \text{ mg} \text{ Salicylsäure gefunden}
\]

\[
\frac{70,0 \text{ mg} \times 180,15 \text{ g/mol}}{138,12 \text{ g/mol}} = 91,3 \text{ mg Acetylsalicylsäure gefunden}
\]

100,0mg Acetylsalicylsäure = 100%

91,3mg Acetylsalicylsäure = 91,3%

Ergebnis:

Beide Präparate weisen einen Acetylsalicylsäuregehalt von 91,3% auf. Dies ist ein sehr gutes Ergebnis für die vergleichsweise kurze Reaktionszeit. Außerdem darf nicht vergessen werden, dass diese Reinheit ohne Umkristallisation erzielt wurde.
13.5.4.3 Schmelzpunkt

Messwerte:

<table>
<thead>
<tr>
<th>ASS1</th>
<th></th>
<th>ASS2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>$F_p^{\text{korr.}} = 131°C$</td>
<td>1.</td>
<td>$F_p^{\text{korr.}} = 134°C$</td>
</tr>
<tr>
<td>2.</td>
<td>$F_p^{\text{korr.}} = 130°C$</td>
<td>2.</td>
<td>$F_p^{\text{korr.}} = 134°C$</td>
</tr>
<tr>
<td>3.</td>
<td>$F_p^{\text{korr.}} = 131°C$</td>
<td>3.</td>
<td>$F_p^{\text{korr.}} = 135°C$</td>
</tr>
<tr>
<td>(4.</td>
<td>$F_p^{\text{korr.}} = 125°C$</td>
<td>4.</td>
<td>$F_p^{\text{korr.}} = 135°C$</td>
</tr>
</tbody>
</table>

Mittelwert: $F_p^{\text{korr.}} = 131°C$ Mittelwert: $F_p^{\text{korr.}} = 135°C$

Ergebnis:
Der Schmelzpunkt von ASS1 liegt bei 131°C, der von ASS2 bei 135°C. Der Literaturschmelzpunkt liegt bei 135°C. Daraus lässt sich schließen, dass das zweite Präparat eine deutlich höhere Reinheit aufweist als das erste.
13.5.4.4 Ausbeute

ASS1

Tabelle 6: Ausbeuteberechnung ASS1

<table>
<thead>
<tr>
<th></th>
<th>1 Mol Salicylsäure</th>
<th>reagiert zu</th>
<th>1 Mol Acetylsalicylsäure</th>
</tr>
</thead>
<tbody>
<tr>
<td>theoretische Ausbeute</td>
<td>138,12 $\frac{g}{mol}$</td>
<td></td>
<td>180,15 $\frac{g}{mol}$</td>
</tr>
<tr>
<td>praktische Ausbeute</td>
<td>3,42g</td>
<td></td>
<td>4,46g</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4,46g = 100%

3,05g = **68,4%**

ASS2

Tabelle 7: Ausbeuteberechnung ASS2

<table>
<thead>
<tr>
<th></th>
<th>1 Mol Salicylsäure</th>
<th>reagiert zu</th>
<th>1 Mol Acetylsalicylsäure</th>
</tr>
</thead>
<tbody>
<tr>
<td>theoretische Ausbeute</td>
<td>138,12 $\frac{g}{mol}$</td>
<td></td>
<td>180,15 $\frac{g}{mol}$</td>
</tr>
<tr>
<td>praktische Ausbeute</td>
<td>5,46g</td>
<td></td>
<td>7,12g</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7,12g = 100%

4,04g = **56,7%**
Ergebnis:

Bei der Synthese von ASS1 wurde eine Ausbeute von 68,4% erzielt, bei ASS2 von 56,7%. Bei beiden Präparaten ist die Ausbeute sehr gering und nicht zufriedenstellend. Dies lässt sich jedoch darauf zurückführen, dass aufgrund der kleinen Reaktionsgefäße nur sehr wenig Salicylsäure eingesetzt werden konnte und Verluste (Rückstände im Reaktionsgefäß, Nutsche etc.) stärker ins Gewicht fallen, wie wenn größere Mengen an Salicylsäure eingesetzt werden.
13.5.4.5 Zusammenfassung

Tabelle 8: Zusammenfassung der Versuchsauswertung von ASS1 und ASS2

<table>
<thead>
<tr>
<th></th>
<th>ASS1</th>
<th>ASS2</th>
</tr>
</thead>
</table>
| eingesetzte Chemikalien | 3,42g Salicylsäure
10mL Essigsäureanhydrid
5 Tropfen konz. Phosphorsäure | 5,46g Salicylsäure
10mL Essigsäureanhydrid
5 Tropfen konz. Phosphorsäure |
| Mikrowelleneinstellung | Methode: Standard
Temperatur: 75°C
Haltezeit: 10 Minuten | Methode: Standard
Temperatur: 2min bei 108°C, dann heruntergekühlt auf 70°C |
| Vorversuch mit Eisen(III)-Ionen | kaum zu erkennende Violett Färbung | kaum zu erkennende Violett Färbung |
| DC | nur Acetylsalicylsäure konnte nachgewiesen werden | nur Acetylsalicylsäure konnte nachgewiesen werden |
| Fotometrische Gehaltsbestimmung | 91,3% Acetylsalicylsäure | 91,3% Acetylsalicylsäure |
| Fp (Literatur) Fp_{korr.} | 135°C
131°C | 135°C
135°C |
| Ausbeute | 68,4% | 56,7% |
Ein Vergleich der beiden Präparate zeigt, dass sich beide nicht im Salicylsäuregehalt unterscheiden, jedoch im Schmelzpunkt und der Ausbeute.

Beim ersten Präparat wurde eine Ausbeute von 68,4% erzielt, der gemessene Schmelzpunkt liegt jedoch noch 4°C unter dem Literaturwert. Die Ausbeute des zweiten Präparats beträgt nur 56,7% und liegt somit deutlich unter der des ersten Präparats. Der gemessene Schmelzpunkt stimmt aber mit dem Literaturwert exakt überein. Die geringere Ausbeute des zweiten Präparats lässt sich eventuell darauf zurückführen, dass die Reaktionszeit durch die nicht korrekte Funktionsweise der Mikrowelle verkürzt war.

Trotz der höheren Reinheit von ASS2 wurde im Protokoll „Herstellung von Acetylsalicylsäure in der Mikrowelle“ (Kapitel 13.5.2) eine Einwaage von ca. 0,025 Mol Salicylsäure verwendet, da nur für die erste Synthese reproduzierbare Synthesebedingungen ermittelt werden konnten. Bei allen anderen Syntheseversuchen hat die Mikrowelle weiter geheizt, auch die gewünschte Temperatur wurde nicht gehalten.

13.5.5 Probleme

Die Labormikrowelle selbst bereitete jedoch schon ab der zweiten ASS-Synthese große Schwierigkeiten, da sie wie in den vorherigen Abschnitten schon beschrieben, ständig über die gewünschte Temperatur geheizt und diese auch nicht gehalten hat. Dadurch war es uns nicht möglich mehrere Präparate mit unterschiedlicher Einwaage an Salicylsäure und vergleichbarer Reaktionszeit und -temperatur zu synthetisieren. Auch nachdem die Mikrowelle zur Reparatur eingeschickt und anschließend mehrere Probeläufe durchgeführt wurden, funktionierte sie immer noch nicht einwandfrei. An dieser
Stelle wurden aus zeitlichen Gründen keine weiteren Mikrowellensynthesen mehr durchgeführt, sondern die bisher erzielten Ergebnisse für die schriftliche Ausarbeitung herangezogen.

Der Gedanke war anfangs, durch Variation der Einwaage an Edukten, der Synthesetemperatur und der Haltezeit mehrere Präparate zu synthetisieren und die Ergebnisse zu vergleichen und zu interpretieren. Dadurch, dass die Mikrowelle letztendlich eingeschickt werden musste, fehlte dafür die Zeit. Dies wäre jedoch ein Ausblick für tiefergehende Beschäftigungen mit diesem Thema für eine Projektarbeit in einem kommenden Lehrgang.

13.6 Konventionelle Synthese
13.6.1 Allgemeines

Als Grundlage für die konventionelle Herstellung von Acetylsalicylsäure diente das Protokoll des Instituts Dr. Flad, welches fast vollständig übernommen werden konnte. Es wurde auch hier auf die Aufreinigung des Präparats durch Umrüstallisation verzichtet, da die herkömmliche Methode mit der Mikrowellensynthese hinsichtlich Ausbeute und Reinheit verglichen werden sollte.
13.6.2 Protokoll

Bezeichnung: 2-Acetoxybenzoesäure [IUPAC], ASPIRIN, ASS
Darstellung aus: Salicylsäure und Essigsäureanhydrid
Reaktionsart: Veresterung (Acylierung, Acetylierung)
Eigenschaften: Farblos, geruchlos, schwach sauer schmeckend; nadelförmig oder in Plättchen kristallisierende Substanz; in kaltem Wasserschlecht, in heißem Wasser und Alkohol gut löslich

Arbeitssicherheit:

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Piktogramme</th>
<th>Signalwort</th>
<th>H-Sätze</th>
<th>P-Sätze</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salicylsäure</td>
<td></td>
<td>Gefahr</td>
<td>302 / 318</td>
<td>261/ 304+340/302+360/305+351+338/301+330+31/313</td>
</tr>
<tr>
<td>Phosphorsäure (85%)</td>
<td></td>
<td>Gefahr</td>
<td>314/290</td>
<td>305+351+338/280/301+330+331</td>
</tr>
<tr>
<td>Essigsäureanhydrid</td>
<td></td>
<td>Gefahr</td>
<td>226/332/30</td>
<td>208/301+330+331/305+351+338/309+310/301+330+331/313</td>
</tr>
<tr>
<td>Acetylsalicylsäure</td>
<td></td>
<td>Achtung</td>
<td>302/319/33</td>
<td>- - -</td>
</tr>
</tbody>
</table>
Physikalische Daten:
Fp: 135°C

Literaturstelle:
Wettbewerbsaufgabe bei der nationalen Runde des Grand Prix Chimique 1991 bei der HOECHST AG in Frankfurt und 2009 an der Hohentwiel-Gewerbeschule in Singen

Verwendung:
Bedeutender pharmazeutischer Wirkstoff

Bruttoreaktionsgleichung:

\[
\text{C}_6\text{H}_5\text{COOH} + \text{H}_2\text{C}==\text{C}==\text{O} \quad \xrightarrow{+\text{H}^+} \quad \text{C}_6\text{H}_5\text{COOH} + \text{H}_3\text{C}==\text{C}==\text{O} + \text{OH}^{-}
\]

Synthese:
In einem Dreihalskolben mit Dimrothkühler, Tropftrichter und Innenthermometer werden 20mL Essigsäureanhydrid und 10 Tropfen Phosphorsäure (w=0,85) vorgelegt. Unter Rühren werden 0,1 Mol Salicylsäure eingetragen. Das Reaktionsgemisch wird anschließend für ca. 30 Minuten unter Rühren im Wasserbad bei 75°C bis 80°C gehalten.

Aufarbeitung:
Nach Ablauf der Reaktionszeit werden zu dem noch heißen Reaktionsgemisch vorsichtig (starke Entwicklung von Essigsäuredampf!) 10mL Wasser zugetropft. Nach Abklingen der Reaktion versetzt man das Reaktionsgemisch mit weiteren 100mL Wasser und lässt es auf Raumtemperatur abkühlen.

Isolierung:
Das abgeschiedene Rohprodukt wird abgesaugt und auf der Nutsche mehrmals mit kleinen Portionen eiskühltem Wasser gewaschen. Der Filterrückstand wird abgepresst und auf einer vorgewärmten Keramikplatte getrocknet. Danach kann die Ausbeute bestimmt werden.
Reinigung:
Auf eine Aufreinigung des Präparats wird verzichtet, um diese Methode mit der Synthese in der Mikrowelle hinsichtlich Reinheit und Ausbeute vergleichen zu können.

Entsorgung:
Die Mutterlauge aus der Synthese wird mit technischer Soda neutralisiert und dem Abwasser zugeführt.

Reinheitsprüfungen:

a.) Dünnschichtchromatographie
Stationäre Phase: a.) Aluminiumoxid mit Fluoreszenzindikator oder b.) Kieselgel mit Fluoreszenzindiktaor

für b.) Ethylacetat: Methanol : konz. Ammoniak = 80 : 19 : 1

Prüflösungen: Jeweils ca. 1 %ige Lösungen in Aceton oder Methanol von:
1. Acetylsalicylsäure (Reinsubstanz)
2. Salicylsäure (Reinsubstanz)
3. Präparat

Visualisierung: Im UV-Licht bei einer Wellenlänge von 254 nm (mit Bleistift markieren.)
Die R_f-Werte werden ermittelt.
b.) **Fotometrische Gehaltsbestimmung**

Es wird eine Stammlösung mit 50 mg/100mL Salicylsäure in ca. 0,1 M Natronlauge hergestellt und daraus eine Standardlösung mit 5 mg/100mL Salicylsäure.

Die Kalibrierkurve wird durch Zweitpunkt-Kalibrierung zwischen der Blindprobe und der Standardlösung festgelegt.

Als Blindprobe für alle Messungen dient die verwendete Natronlauge.

Die Messungen erfolgen bei 295 nm.

Von dem Präparat werden ca. 100 mg genau eingewogen und in ca. 0,1 M Natronlauge zu 250 mL gelöst (im 250mL-Messkolben). Nach 15 Minuten Standzeit werden von dieser Lösung 10,00mL mit der Bürette abgemessen und mit Natronlauge zu 100mL im Messkolben verdünnt. (der Konzentration in der Ausgangslösung).

Die Konzentration an Salicylsäure in dieser Messlösung wird über die Kalibrierkurve ermittelt.

Berechnung:

\[
\text{Salicylsäure}_{\text{Kalibrierkurve}} \cdot 25 = \text{mg Salicylsäure}_{\text{gefunden}}
\]

\[
\frac{\text{mg Salicylsäure}_{\text{gefunden}}}{M_{\text{Acetylsalicylsäure}}} = \frac{\text{mg Acetylsalicylsäure}_{\text{gefunden}}}{M_{\text{Salicylsäure}}}
\]

\[
\text{mg Einwaage}_{\text{Präparat}} = 100\%
\]

\[
\text{mg Acetylsalicylsäure}_{\text{gefunden}} = x \% 25
\]

c.) Schmelzpunkt:

\[Fp = 135^\circ C \quad [63]\]

21Die Natronlauge muss nicht eingestellt werden. Es müssen jedoch alle Lösungen mit der gleichen Natronlauge angesetzt werden.

22In der Lösung liegt Natriumsalicylat vor.

23Die Linearität über diesen Konzentrationsbereich wurde geprüft und ist gegeben.

24Die Acetylsalicylsäure wird verseift; es liegt also Natriumsalicylat und Natriumacetat vor. Bei der Messwellenlänge von 295 nm absorbiert nur Salicylat.

25Ergibt sich ein Gehalt >100% liegt, neben Acetylsalicylsäure, noch eine Verunreinigung durch Salicylsäure vor.
13.6.3 Synthese und Versuchsbeobachtung

Einwaage Salicylsäure: 15,8g
20mL Essigsäureanhydrid
10 Tropfen Phosphorsäure (w=0,85)
Temperatur: ca. 70°C
Haltezeit: ca. 30 Minuten

Die Synthese verlief wie erwartet, denn nach Zugabe von insgesamt 110mL Wasser ist ein weißer Feststoff auskristallisiert. Dieser wurde, wie im Protokoll beschrieben, isoliert und getrocknet.

13.6.4 Versuchsauwsertung
13.6.4.1 Qualitativer Nachweis

Vorprobe mit Eisen(III)-Salzlösung
Es wurden einige Tropfen Ammoniumeisen(III)sulfat-Lösung zu einer Spatelspitze des getrockneten Präparats gegeben.
Es hat sich, wie auch schon bei den Präparaten aus der Mikrowelle, ein kaum zu erkennender violetter Farbstoff gebildet.

Ergebnis
Auch bei der konventionellen Synthese wurde die eingesetzte Salicylsäure beinahe vollständig umgesetzt.
Dünnschichtchromatographie

Von links nach rechts wurden die Lösungen von Acetylsalicylsäure, Salicylsäure und die des Präparats auf die DC-Platte aufgetragen.

Abbildung 21: DC-Platte
ASS herkömmlich

Acetylsalicylsäure (Reinsubstanz): \(R_f \)-Wert \(\frac{3,0 \text{ cm}}{5,2 \text{ cm}} = 0,58 \)

Salicylsäure (Reinsubstanz): \(R_f \)-Wert \(\frac{1,4 \text{ cm}}{5,2 \text{ cm}} = 0,27 \)

Präparat: \(R_f \)-Wert \(\frac{3,0 \text{ cm}}{5,2 \text{ cm}} = 0,58 \)

Ergebnis

13.6.4.2 Quantitative Bestimmung

Fotometrische Gehaltsbestimmung
Es wurde ebenfalls eine Stamm- und eine Standardlösung mit Salicylsäure angesetzt. Genaue Konzentrationsangaben sind dem Protokoll Kapitel 13.6.2 zu entnehmen. Auch in diesem Fall wurden 100,0mg des Präparats genau auf der Analysenwaage eingewogen und mit 0,1M Natronlauge aufgefüllt. Bei der verwendeten Natronlauge handelte es sich um die gleiche, die auch zur Erstellung der Kalibriergeraden und Messung der beiden Mikrowellen-Präparate eingesetzt wurde. Nach 15 Minuten Standzeit wurden 10,00mL dieser Lösung mit einer Bürette abgemessen und zu 100mL mit der gleichen Natronlauge aufgefüllt.
Abbildung 22: Kalibrierkurve „Fotometrische Gehaltsbestimmung ASS“
Projektarbeit: Organische Synthesen in der Labormikrowelle

Messwerte

<table>
<thead>
<tr>
<th>Präparat</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>0,625</td>
</tr>
<tr>
<td>2.</td>
<td>0,626</td>
</tr>
<tr>
<td>3.</td>
<td>0,627</td>
</tr>
</tbody>
</table>

Mittelwert: E=0,626 \(\rightarrow\) 2,6mg Salicylsäure (aus Kalibrierkurve abgelesen)

Zur Kalibrierung wurde die gleiche Standardlösung verwendet, welche auch schon bei den in der Mikrowelle synthetisierten Präparaten eingesetzt wurde.

Berechnung

\[
\frac{2,6\text{mg} \times 25}{138,12 \text{g mol}^{-1} \times \text{mol}} \times 180,15 \text{g} = 84,8\text{mg Acetylsalicylsäure}_{\text{gefunden}}
\]

\[
100,0\text{mg Acetylsalicylsäure} = 100\%
\]

\[
84,8\text{mg Acetylsalicylsäure} = 84,4\%
\]

Ergebnis

Das Präparat, das auf die konventionelle Art synthetisiert wurde, enthält laut der fotometrischen Gehaltsbestimmung 84,4% Acetylsalicylsäure. Bedenkt man die verhältnismäßig lange Synthesedauer, ist das Ergebnis nicht zufriedenstellend.

13.6.4.3 Schmelzpunkt

Messwerte

<table>
<thead>
<tr>
<th>Fp_{korr}</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>135°C</td>
</tr>
<tr>
<td>2.</td>
<td>134°C</td>
</tr>
<tr>
<td>3.</td>
<td>135°C</td>
</tr>
</tbody>
</table>

Mittelwert: Fp_{korr.} = 135°C

Ergebnis

Das Präparat hat einen korrigierten Schmelzpunkt von 135°C. Dieser stimmt exakt mit dem Literaturschmelzpunkt überein.
13.6.4.4 Ausbeute

Tabelle 9: Ausbeuteberechnung ASS herkömmlich

<table>
<thead>
<tr>
<th></th>
<th>1 Mol Salicylsäure</th>
<th>reagiert zu</th>
<th>1 Mol Acetylsalicylsäure</th>
</tr>
</thead>
<tbody>
<tr>
<td>theoretische Ausbeute</td>
<td>138,12 g/mol</td>
<td></td>
<td>180,15 g/mol</td>
</tr>
<tr>
<td>praktische Ausbeute</td>
<td>13,8g</td>
<td></td>
<td>18,00g</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16,95g</td>
</tr>
</tbody>
</table>

18,00g = 100%
16,95g = 94,2%

Ergebnis
Bei dem herkömmlich synthetisierten Präparat wurde eine Ausbeute von 94,2% erzielt.
13.6.4.5 Zusammenfassung

<table>
<thead>
<tr>
<th>eingesetzte Chemikalien</th>
<th>ASS<sub>herkömmlich</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>13,8g Salicylsäure</td>
<td>13,8g Salicylsäure</td>
</tr>
<tr>
<td>20mL Essigäsureanhydrid</td>
<td>20mL Essigäsureanhydrid</td>
</tr>
<tr>
<td>10 Tropfen konz. Phosphorsäure</td>
<td>10 Tropfen konz. Phosphorsäure</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Synthesebedingungen</th>
<th>Dauer: ca. 30 Minuten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatur</td>
<td>ca. 70°C</td>
</tr>
</tbody>
</table>

Vorversuch mit Eisen(III)-Ionen

kaum zu erkennender violetter Farbstoff

DC

nur Acetylsalicylsäure konnte nachgewiesen werden

Fotometrische Gehaltsbestimmung

84,4% Acetylsalicylsäure

Fp (Literatur)

135°C

Fp_{korr.}

135°C

Ausbeute

94,2%
Die Versuchsauswertung zeigt, dass bei der herkömmlichen Synthese mit längerer Synthesedauer und größerer Einwaage an Salicylsäure mit Hilfe der Dünnschichtchromatographie ebenfalls nur Acetylsalicylsäure nachgewiesen werden konnte.

Durch die fotometrische Gehaltsbestimmung wurde ein Acetylsalicylsäure-Gehalt von 84,4\% ermittelt. Der Schmelzpunkt des herkömmlichen Präparats stimmt exakt mit dem Literaturschmelzpunkt überein.

Doch auch bei der fotometrischen Gehaltsbestimmung sind Fehler bei der Probenvorbereitung möglich, da lediglich eine Zweipunkt-Kalibrierung vorgenommen wird.

Es ist jedoch im Normalfall nicht davon auszugehen, dass bei dieser Art der Kalibrierung ein Fehler von beinahe 15\% unterläuft, da das herkömmlich synthetisierte Präparat eine Reinheit von beinahe 100\% anstatt von 84,4\% aufweisen müsste.

Daher ist anzunehmen, dass der Messfehler bei der Schmelzpunktbestimmung aufgetreten ist.

Mit der konventionellen Methode im Dreihalskolben und größerer Einwaage an Salicylsäure wurde eine Ausbeute von 94,2\% erzielt.

13.6.5 Probleme

Bei der herkömmlichen Synthese gab es keinerlei Probleme.
13.7 Methodenvergleich

13.7.1 Gegenüberstellung der beiden Methoden

In der folgenden Tabelle werden die drei Präparate hinsichtlich eingesetzter Chemikalien, Gehalt, Schmelzpunkt und Ausbeute gegenübergestellt. Auch der technische Aufwand, die Synthesevorbereitung, Zeitaufwand für die Synthese selbst, Gerätekosten, Arbeitssicherheit, Wirkungsgrad und die Reproduzierbarkeit der beiden Methoden werden miteinbezogen. Bei den Präparaten ASS1 und ASS2 handelt es sich um die beiden Präparate, die in der Mikrowelle synthetisiert wurden. ASS\textsubscript{herkömmlich} ist das konventionell synthetisierte Präparat im Dreihalskolben mit Dimrothkühler, Tropftrichter und Innenthermometer. Die Farbunterlegung in grün zeigt, welche Methode von Vorteil ist. Rot hingegen gibt an, welche dieser Methoden im Vergleich schlechter abschneidet.

Tabelle 11: Gegenüberstellung der beiden Methoden

<table>
<thead>
<tr>
<th></th>
<th>ASS1</th>
<th>ASS2</th>
<th>ASS\textsubscript{herkömmlich}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menge an eingesetzten Chemikalien</td>
<td>3,42g Salicylsäure 10mL Essigsäureanhydrid 5 Tropfen konz. Phosphorsäure</td>
<td>5,46g Salicylsäure 10mL Essigsäureanhydrid 5 Tropfen konz. Phosphorsäure</td>
<td>13,8g Salicylsäure 20mL Essigsäureanhydrid 10 Tropfen konz. Phosphorsäure</td>
</tr>
<tr>
<td>Gehalt</td>
<td>91,3% Acetylsalicylsäure</td>
<td>91,3% Acetylsalicylsäure</td>
<td>84,4% Acetylsalicylsäure</td>
</tr>
<tr>
<td>Fp (Literatur)</td>
<td>135°C 131°C</td>
<td>135°C 135°C</td>
<td>135°C 135°C26</td>
</tr>
</tbody>
</table>

26Es liegt höchstwahrscheinlich ein Messfehler vor (siehe Kapitel 13.6.4.5 „Zusammenfassung“)
Projektarbeit: Organische Synthesen in der Labormikrowelle

<table>
<thead>
<tr>
<th>Ausbeute</th>
<th>68,4%</th>
<th>56,7%</th>
<th>94,2%</th>
</tr>
</thead>
<tbody>
<tr>
<td>technischer Aufwand</td>
<td>gering</td>
<td>gering</td>
<td>aufwändiger</td>
</tr>
<tr>
<td>Vorbereitung</td>
<td>keine</td>
<td>keine</td>
<td>Aufbau der Apparatur</td>
</tr>
<tr>
<td>Zeitaufwand (Synthese)</td>
<td>15 Minuten</td>
<td>nicht reproduzierbar<sup>27</sup></td>
<td>60 Minuten</td>
</tr>
<tr>
<td>Gerätekosten</td>
<td>ca. 20.000 €</td>
<td>ca. 20.000 €</td>
<td>ca. 360 €</td>
</tr>
<tr>
<td>Arbeitssicherheit</td>
<td>hoch</td>
<td>hoch</td>
<td>mittel</td>
</tr>
<tr>
<td>Wirkungsgrad</td>
<td>hoch</td>
<td>hoch</td>
<td>niedrig</td>
</tr>
<tr>
<td>Reproduzierbarkeit</td>
<td>sehr gut</td>
<td>sehr gut</td>
<td>nur eingeschränkt</td>
</tr>
</tbody>
</table>

²⁷ Die Mikrowelle hat trotz korrekter Temperatureinstellung von 75°C selbstständig auf 108°C weitergeheizt und nach ca. 2 Minuten auf 70°C heruntergekühlt.
13.7.2 Auswertung

Betrachtet man die Tabelle 11 „Gegenüberstellung der beiden Methoden“ ist auf einen Blick zu erkennen, dass die ASS-Synthese in der Labormikrowelle deutlich besser abgeschnitten hat als die konventionelle Methode. In den folgenden Abschnitten werden die Ergebnisse erläutert und interpretiert.

Menge an eingesetzten Chemikalien
In der Labormikrowelle wurde aufgrund der kleinen Gefäße nur rund ein Viertel der Menge an Salicylsäure eingewogen, die bei der herkömmlichen Synthese verwendet wurde. Dadurch wurden Chemikalien eingespart. Dies hat zur Folge, dass zum einen Kosten beim Chemikalienkauf aber auch bei der Chemikalienentsorgung eingespart werden können.

Gehalt
Beim Punkt „Gehalt“ schneidet ebenfalls das Produkt aus der Labormikrowelle besser ab. Es wurde beinahe 10% mehr Acetylsalicylsäure gefunden als bei dem herkömmlich hergestellten Präparat.

Schmelzpunkt

Ausbeute
Bei diesem Punkt weißt die konventionelle Methode einen klaren Vorteil auf, da bei ASSherkömmlich eine Ausbeute von 94,2% ermittelt wurde. Im Gegensatz dazu haben die
beiden in der Mikrowelle synthetisierten Präparate rund 30% weniger Ausbeute, genauer gesagt 68,4% Ausbeute bei ASS_1 und 56,7% bei ASS_2.

Technischer Aufwand
Der technische Aufwand ist bei der Synthese in der Mikrowelle gering, da lediglich eine Labormikrowelle und ein 35mL-Reaktionsgefäß benötigt werden.

Im Gegensatz dazu werden bei der herkömmlichen Methode ein Dreihalskolben mit Innenthermometer, Dimrothkühler mit entsprechenden Wasserschläuchen, Tropftrichter, Heizplatte mit Magnetrührer und ein Wasserbad mit Thermometer benötigt. An dieser Stelle wird deutlich, dass der technische Aufwand bei der konventionellen Methode um ein Vielfaches größer ist als bei der Mikrowellensynthese.

Vorbereitung

Zeitaufwand (Synthese)
Unter „Zeitaufwand Synthese“ wird die reine Synthesezeit verstanden, d.h. Aufheiz-, Halte- und Abkühlzeit. Der Aufbau der Apparatur sowie die Isolierung und Trocknung des Präparats werden nicht dazu gezählt.

Die Synthese in der Mikrowelle von ASS_1 dauerte mit Aufheizen, Einhaltung der im Protokoll angegebenen Haltezeit und Abkühlung des Reaktionsgemisches ca. 15 Minuten.

Bei der zweiten Synthese in der Mikrowelle war die Reaktionszeit nicht reproduzierbar. Die Gründe dafür wurden schon in den vorangegangenen Kapiteln ausführlich erläutert.

Der Zeitaufwand bei der herkömmlichen Synthese war deutlich größer, da vom Aufheizen des Wasserbades bis zum vollständigen Abkühlen des Präparats ca. 1 Stunde verstrichen ist.

Gerätekosten
Im Gegensatz dazu beträgt der Neupreis einer CEM-Mikrowelle (Modell Discover) laut Frau Dambacher, einer CEM-Mitarbeiterin, ca. 20.000 €.

Arbeitssicherheit

Im Gegensatz dazu ist die Arbeitssicherheit bei der konventionellen Methode nicht immer gewährleistet. Hält man sich an die gegebenen Vorschriften und arbeitet umsichtig und vorsichtig besteht auch bei der herkömmlichen Methode kein großes Risiko. Handelt es sich jedoch um Anfänger oder Personen, die im Labor nicht umsichtig sondern eher fahrlässig arbeiten, birgt diese Methode doch das ein oder andere Sicherheitsrisiko.

Bei der Synthese von Acetylsalicylsäure benötigt man eine Temperatur des Reaktionsgemisches von ca. 75°C, d.h. das Wasserbad muss auf ca. 95 bis 100°C aufgeheizt werden. Wird dabei fahrlässig gearbeitet, kann man sich durch das heiße Wasser Verbrühungen zuziehen. Bei anderen Synthesen wird oft eine Temperatur des Kolbeninhaltes über 100°C benötigt, d.h. ein Wasserbad reicht nicht mehr als Heizquelle aus; es muss ein Ölbad eingesetzt werden. Dabei kann man sich ebenfalls Verbrühungen zufügen. Es besteht außerdem noch eine zusätzliche Gefahr, wenn mit wasserunlöslichem Öl gearbeitet wird und Wasser in das Ölbad gelangt.

Wirkungsgrad

Auch in puncto Wirkungsgrad schneidet die Mikrowellensynthese deutlich besser ab. Genauere Erklärungen sind im Kapitel 7.7 „Wirkungsgrade und Vergleich der Mikrowellen“ zu finden.

Reproduzierbarkeit

Bei der Mikrowellen-Synthese ist die Reproduzierbarkeit gewährleistet, vorausgesetzt das Gerät arbeitet einwandfrei. Durch die Eingabe der genauen Temperatur und der

13.7.3 Ergebnis

Abschließend stellt sich die Frage, welche Methode sich besser zur Synthese von Acetylsalicylsäure eignet: Die rasche Synthese in der Mikrowelle oder doch die sehr aufwändige und zeitintensive konventionelle Methode?

14. Fazit

Abschließend möchten wir die Schwierigkeiten mit den Synthesen, dem Gerät und dem Thema an sich diskutieren und unsere Ergebnisse interpretieren.

Projektarbeit: Organische Synthesen in der Labormikrowelle

Bei der Synthese des Salicylsäuremethylesters (Wintergrünöl) trat das Problem auf, dass die Mengenangaben nicht vorgegeben waren und wir selbst eine Einwaage festlegen mussten. Das Gemisch im Reaktionsgefäß kochte über und der Deckel des Reaktionsgefässes wurde beschädigt. Wir glichen die Mengenangaben an, konnten diese jedoch erst im Januar testen, da die Labormikrowelle im Dezember nicht mehr einwandfrei funktioniert hatte.

Die ASS-Synthese in der Labormikrowelle gelang auf Anhieb problemlos, was ein Schnelltest mit Eisen(III)-Salzlösung bestätigte. Im Vergleich zur reinen Salicylsäure färbte sich das in der Labormikrowelle hergestellte Präparat nur leicht violett. Die Salicylsäure wurde somit in hohem Maß in Acetyl salicylsäure umgesetzt, was auch durch weitere Reinheitsprüfungen bestätigt werden konnte.

Die herkömmliche Synthese von ASS, wovon wir ein Praktikumsprotokoll des Instituts Dr. Flad erhalten haben, verlief ebenfalls ohne Probleme. Wir haben die Präparate isoliert und getrocknet, aber nicht aufgearbeitet, da die Ein- und Auswaagen bei der Labormikrowelle zu gering waren, was mehr Verlust bedeutet hätte. Um einen Vergleich zwischen herkömmlicher Synthese und Mikrowellensynthese erstellen zu können, wurde auch das herkömmlich dargestellte Präparat nicht aufgearbeitet.

Interpretation der Ergebnisse

- Die Synthese des nach Pfirsich riechenden Esters (Benzylacetat) hat Probleme bereitet. Eine Lösung konnten wir in dieser kurzen Zeit nicht finden, da wir die Synthese wie im CEM-Protokoll beschrieben durchgeführt haben.
Unsere Schlussfolgerung: Dieser Versuch muss neu aufgebaut und ein neues Versuchsprotokoll erstellt werden.

- Die Synthese des nach Banane riechenden Esters (Isoamylacetat) hat problemlos funktioniert. Der Geruch des Esters war auch ohne Aufarbeitung zu identifizieren.
Unsere Schlussfolgerung: Ein Schülerversuch wäre möglich. Die Synthese erfolgt schnell und ist gut verständlich. Ein Ergebnis ist sofort „riechbar“.

- Die Synthese des Wintergrünöls war erfolgreich, jedoch waren die zuerst verwendeten Mengenangaben falsch. Wir mussten den Versuch wiederholen.

- Die konventionelle Synthese und die Mikrowellensynthese von ASS waren erfolgreich. Die Reinheitsprüfungen zeigten auf, dass die Acetylsalicylsäure aus der Mikrowelle reiner ist, jedoch eine geringere Ausbeute aufweist (das könnte aber auch daran liegen, dass wir aufgrund des limitierten Fassungsvermögens des Reaktionsgefäßes nur ¼ der angegebenen Menge der herkömmlichen Synthese einwiegen konnten).
Da unser Thema umfangreich war, konnten wir uns nicht mit allem beschäftigen was wir anfangs geplant hatten. Eine GC mit den ASS-Präparaten, dem Bananenester und die neue Anleitung zu dem Pfirsichester waren uns zeitlich nicht möglich.

Das Thema war spannend und überwiegend gut ausführbar, die Nachweise haben sehr gut funktioniert. Wir kamen mit dem Thema gut zurecht und dank der Gespräche mit Herrn Prof. Dr. Menzel konnten wir uns die wichtigsten Gebiete unserer Projektarbeit erarbeiten.
15. Literaturverzeichnis

Projektarbeit: Organische Synthesen in der Labormikrowelle

[31] http://d-nb.info/985493364/3404.01.14
[32] http://books.google.de/books?id=bv1NiF2LiNMC&pg=PA144&lpg=PA144&dq=Isoamylacetat+bier&source=bl&ots=FOa4Fp1j_E&sig=9cy2rdCmmt5cSqTlDglFSzti3IQ&hl=de&sa=X&ei=PxfUUq7HFdK7hAfszoCADQ&ved=0CFIQ6AEwBg#v=onepage&q=Isoamylacetat%20bier&f=false14.01.14
Projektarbeit: Organische Synthesen in der Labormikrowelle

[45] Häusler K., Rampf H., Reichelt R., 1995 Experimente für den Chemieunterricht, Oldenbourg, München,

[47] http://www.nature.com/nature/journal/v385/n6618/abs/385718a0.html 03.12.2013

[56] Reichel, F.-X., Taschenatlas Toxikologie, 2002, Thieme Verlag Stuttgart

Alle Reaktionsgleichungen und Strukturformeln ohne Quellenangabe wurden vom jeweiligen Autor selbst erstellt.