Im Rahmen von GLOBE erheben Schülerinnen und Schüler an GLOBE-Schulen Umweltdaten aus der näheren Schulumgebung mit Hilfe einheitlicher Messprotokolle nach wissenschaftlichen Standards, die sie über Internet in eine internationale Datenbank einspeisen. Die Daten werden prozessiert, visualisiert und können von allen Interessierten weltweit über das World Wide Web abgerufen werden. Die Daten der Messprotokolle Atmosphäre/Klima, Hydrologie, Boden, Landbedeckung / Biologie und Phänologie werden zu Grafiken und Karten aufbereitet, mit denen die lokalen, regionalen und globalen Umweltbedingungen an den jeweiligen Standorten dargestellt werden. Die lokal erfassten Daten können mit den Messdaten der anderen ca. 17.000 beteiligten Schulen in über 100 Ländern verglichen, ausgewertet und interpretiert werden.
GLOBE Wissenschaftler verwenden die weltweit gesammelten Daten für ihre Forschung. Diese Daten werden als Startparameter oder zur Bestätigung von mathematischen Modellen zur Vorhersage von Klimaänderungen oder Veränderungen der Vegetation verwendet.
Wie bereits erwähnt, werden auch zu diesem Zweck mit Hilfe von GLOBE langfristig Datenbanken aufgebaut. GLOBE Schüler helfen die Sensoren der Landsat Satelliten zu bewerten, indem Sie die tatsächlichen Gegebenheiten am Boden mit den Informationen der Satelliten vergleichen. Die Ergebnisse werden bei der Entwicklung zukünftiger Sensoren eingesetzt.
Neben dem internationalen Wissenschaftlerteam unterstützen auch deutsche Wissenschaftler Schulen bei ihren Auswertungen und sind bereit Forschungsprojekte mit GLOBE Schulen durchzuführen.
GLOBE science investigators have plans to use every type of data collected by GLOBE. Brief statements of these uses are given below. In addition, environmental data almost always have additional uses beyond the ones planned. Some of these uses arise long after the data are collected. Therefore, taking Earth science data has both current and future value. Taking today's Earth science data is something no one can come back and do tomorrow. In Earth science, the first imperative is to collect today's data.
GLOBE data: |
Atmosphere |
|
Clouds |
- Help tie new measurements of clouds by automated sensors to long-term historical data records of human observations
- Help to identify cloud type more accurately than is possible by remote sensing
- Contribute to determination of how cloud climatology may be changing (a major issue in assessing climate change)
|
Temperature, Precipitation, and Relative Humidity |
- Provide a denser network of observations than is available using only official weather stations
- Provide finer resolution data crucial for investigating localized variations (e.g., urban heat islands)
- Augment data needed for regional forecasts and climate records in areas of the world where there are few official weather stations
|
Combined Atmosphere & Soil
Temperature |
- Help scientists calculate the rate of heat exchange between the atmosphere and the soil (see also entries for Atmosphere Temperature & Soil Temperature)
|
Aerosol |
- Provide calibrated ground-based observations to help assess the performance of space-based instruments and to fill in the global views of aerosol distributions provided by satellite remote sensing
- Detect the presence of dust, smoke, and other aerosols and help scientists track their movement in the atmosphere
|
Ozone |
- Identify areas of high and low ozone concentrations and the times of year and weather conditions when they occur
- Help scientists interpret satellite observations of the total column density of ozone
- Provide quantitative measurements of ozone to help local agencies and others know how much ozone is present to affect plants and animals
|
Hydrology |
Improve the monitoring of surface waters both inland and along the coasts of oceans and seas |
Transparency |
- Determine how far light can penetrate the water and support the growth of algae and submerged aquatic vegetation
|
Temperature |
- Determine the overturning of lakes
- Track the mixing of waters in estuaries and along coasts
- Help determine evaporation rates
- Help scientists determine what can live in the water
|
pH |
- Help scientists determine what can live in the water, both animals and plants
- Track the mixing of waters in estuaries and along coasts
- Help scientists relate water quality to surrounding soil and geology and to the pH of rain and snow melt
|
Conductivity |
- Determine the overall loading of salts and other compounds dissolved in fresh water
- Help determine the usability of fresh water for different purposes
|
Salinity |
- Track the mixing and source of waters in estuaries and along coasts
- Help track the state of saline inland waters
|
Alkalinity |
- Help determine the vulnerability of fresh waters to changes in pH from inputs of acidity
|
Dissolved Oxygen |
- Determine what animals can live in the water
- Help scientists determine the mixing of air and water at the water's surface
|
Nitrates |
- Help scientists determine the potential uses of water
- Help determine the effects of inputs of nutrients on a water body
|
Fresh Water Macroinvertebrates |
- Help determine the biodiversity of a fresh water ecosystem
- Help scientists determine the overall health of a water body
|
Marine Macroinvertebrates |
- Help determine the biodiversity of coastal beach ecosystems
- Help determine the overall health of coastal beach ecosystems
- Test the hypothesis that the distributions of marine animals will change with climate change
|
Soil |
|
Temperature |
- Provide new data for tracking climate and annual cycles
- Help scientists determine times of pest emergence and plant sprouting
- Help determine heat transport in near-surface soil
- Help scientists monitor the energy balance of the Earth system
|
Moisture |
- Help track the water cycle in the Earth system
- Help determine the times of plant sprouting and growth
- Help scientists improve weather and climate prediction
- Compare with existing models and data sets for validation and for local detail
|
Field Characterization (structure, color, consistence, texture, and the presence of rocks, roots, & carbonates |
- Help scientists create soil maps
- Help track the global carbon cycle
- Provide information for interpretation of soil temperature and moisture measurements
|
pH |
- Help determine what can grow in the soil
- Help determine the effect on the pH of water flowing through the soil
|
Bulk Density |
- Help in the interpretation of soil temperature and moisture measurements
- Help determine soil porosity (volume of empty space for air and water) in combination with Particle Density
|
Particle Density |
- Help determine soil porosity (volume of empty space for air and water) in combination with Bulk Density
- Provide some indication of the mineral versus organic content of a soil
|
Fertility |
- Indicate the suitability of the soil for supporting growth of crops and other plant life
|
Particle Size Distribution |
- Determine the mixture of sand, silt, and clay particles in soil
- Help determine the appropriate uses of a soil
|
Land Cover |
Help scientists study the terrestrial components of the energy, water, carbon, nitrogen, and other cycles of the Earth system Help in the understanding of local climate and watersheds |
Sample Site |
- Classify land cover for comparison with maps derived from satellite remote sensing
|
Biometry |
- Help scientists determine the amount of biomass present
- Help validate land cover classifications of sample sites
|
Mapping |
- Guide systematic observation of land cover classification
|
Change |
- Determine land cover change in support of the study of changes in local climate, watersheds, and the cycle of the Earth system
|
Phenology |
Help scientists detect the nature and extent of climate change and its effects on plants and animals |
Green-up, Green-down Budburst, Lilacs |
- Delineate the length start and end of the growing season
- Help scientists interpret satellite observations of greenness
|
Hummingbirds |
- Determine changes in hummingbird migration as both an indicator and response to climate changes
|